Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-25T13:24:07.788Z Has data issue: false hasContentIssue false

Theory of Accretion Disk Coronae

Published online by Cambridge University Press:  12 April 2016

T. R. Kallman*
Affiliation:
NASA/Goddard Space Flight Center, Greenbelt, MDUSA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Accretion disk coronae are likely to be the dominant site for X-ray absorption and reprocessed emission in low mass X-ray binaries, and may be present in other classes of compact X-ray sources such as active galactic nuclei and cataclysmic variables. In spite of this fact, and in spite of the observational evidence for their existence, there remain many uncertainties about the structure of accretion disk coronae. This paper will discuss the coronal structure and dynamics, their X-ray spectral signatures including coupling to the variability behavior of compact X-ray sources, and the major unsolved theoretical issues surrounding them.

Type
5. Compact Binaries
Copyright
Copyright © Cambridge University Press 1990

References

Begelman, M., McKee, C. E., and Shields, G. B., 1983, Ap. J., 271, 70.CrossRefGoogle Scholar
Begelman, M. and McKee, C. E., 1983, Ap. J., 271, 89 (BMS).CrossRefGoogle Scholar
Fabian, A., Guilbert, P., and Ross, R.R., 1982, MNRAS, 199, 1045.CrossRefGoogle Scholar
Field, G. B., 1965, Ap. J., 142, 531.CrossRefGoogle Scholar
Kahn, S.M., Seward, F.D., and Chlebowski, T., 1984, Ap. J., 283, 286.CrossRefGoogle Scholar
Kallman, T. R., 1984, Ap. J., 280, 269.CrossRefGoogle Scholar
Kallman, T. R., and McCray, R. A., 1982, Ap. J. Suppl, 50, 263.CrossRefGoogle Scholar
Kallman, T. R. and Mushotzky, R., 1985, Ap. J., 292, 49.CrossRefGoogle Scholar
Krolik, J.H., and Kallman, T.R., 1984, Ap. J., 286, 366.CrossRefGoogle Scholar
Krolik, J.H., and Kallman, T.R., 1987, Ap. J. Lett., 320, L5.CrossRefGoogle Scholar
Krolik, J. H., McKee, C. F., and Tarter, C. B., 1981, Ap. J., 249, 422.CrossRefGoogle Scholar
London, R., 1982, in Cataclysmic Variables and Low Mass X-ray Binaries,,Patterson, J. and Lamb, D., eds..Google Scholar
McClintock, J., London, R.A., Bond, H.E., and Grauer, A.D., 1982, Ap. J., 258, 245.CrossRefGoogle Scholar
Molnar, L., 1986, in The Physics of Accretion onto Compact Objects,, Mason, K.O., Watson, M., and White, N.E., eds. (Berlin: Springer).Google Scholar
Raymond, J.C., and Smith, B. H., 1977, Ap. J. Supp., 35, 419.Google Scholar
Shakura, N. I., and Sunyaev, R.A., 1971, Astron. and Astrophys., 24, 337.Google Scholar
Shields, G.A., McKee, C.F., Lin, D.C., and Begelman, M. 1986, Ap. J., 306, 90.CrossRefGoogle Scholar
Vrtilek, S.D., Kahn, S.M., Grindlay, J.E., Helfand, D.J., and Seward, F.E., 1985, Ap.J., 307, 698.CrossRefGoogle Scholar
Vrtilek, S.D., Helfand, D.J., Halpern, J.P., Kahn, S.M., and Seward, F.D., 1986, Ap. J.,.Google Scholar
Vrtilek, S. D., Swank, J., and Kallman, T., 1988, Astrophys. J., 326, 186.Google Scholar
White, N.E., and Holt, S.S., 1982, Ap. J., 257, 318.CrossRefGoogle Scholar
White, N.E. et al., 1986, M.N.R.A.S., 218, 129.CrossRefGoogle Scholar