Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T07:26:45.036Z Has data issue: false hasContentIssue false

The Value of Fabry-Perot Interferometry in Studying Long-Term Convective Line Shifts

Published online by Cambridge University Press:  12 April 2016

Robert S. McMillan
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
T. H. Bressi
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
J. L. Montani
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
T. L. Moore
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
M. L. Perry
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721
A. F. Tubbiolo
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Small < 10 m s−1 variations of radial velocity (RV) with multi-year periods in solar-type stars may be indistinguishable from the effects induced on lines by stellar activity cycles (Dravins 1985; Saar & Donahue 1997). Dravins (1992) recommended a resolving power R > 3 × 105 to measure accurately the subtle changes in the shapes of bisectors of photospheric absorption lines driven by changes of granular convection in slowly rotating dwarf stars. Butler et al. (1996) measure impressively small amplitudes of RVs by using echelle spectrographs that cover a broad spectrum. However, to cover a broad spectrum the resolving power is typically limited to < 7 × 104, and the necessary presence of the iodine absorption spectrum may make it difficult to measure convective line shifts contemporaneously with the RV time series. Furthermore, to reach an RV accuracy of ± 3 ms−1 the whole profile of each line is used, thus maximizing the possibility that changes in the shapes of the lines’ C-bisectors could induce an apparent variation of RV.

Dravins (1985) recommended the exclusive use of the steep flanks of photospheric absorption lines to minimize the effects of convection on apparent RV. McMillan et al. (1993, 1994) demonstrated that such RV measurements made with a Fabry-Perot etalon (FPE) interferometer in transmission can be stable in the presence of stellar line variations seen by other investigators whose measurements were not based exclusively on line flanks. Dravins also prescribed high resolving power, high signal-to-noise ratio, high instrumental contrast, and low instrumental wings to analyze the rest of the line profile for convectively-driven changes (Dravins 1978, 1987, 1992). A double- or multiple-pass FPE scanning whole line profiles can provide high R, high contrast, low wings, and a stable, symmetrical line spread function with small (portable) optics, although the low photon efficiency will restrict its use to a few carefully selected stars. The spectral classes of these stars should span the spectral classes of the stars being monitored by others for planets. We describe a possible implementation of this concept that has the potential for adequate photon flux: observing symbiotically through another instrument on a 6-m to 10-m class telescope.

Type
Part 7. Convection, Line Asymmetry
Copyright
Copyright © Astronomical Society of the Pacific 1999

References

Baranne, A., Queloz, D., Mayor, M., Adrianzyk, G., Knispel, G., Kohler, D., Lacroix, D., Meunier, J.-P., Rimbaud, G., & Vin, A. 1996, A&AS, 119, 373 Google Scholar
Brown, T.M., Noyes, R.W., Nisenson, P., Korzennik, S.G., & Horner, S. 1994, PASP, 106, 1285 Google Scholar
Butler, R.P., & Marcy, G.W. 1996, ApJ, 464, L153 CrossRefGoogle Scholar
Butler, R.P., Marcy, G.W., Williams, E., McCarthy, C., Dosanjh, P., & Vogt, S.S. 1996, PASP, 108, 500 Google Scholar
Cochran, W.D., & Hatzes, A.P. 1994, Ap&SS, 212, 281 Google Scholar
Cochran, W.D., Hatzes, A., Marcy, G.W., & Butler, R.P. 1997, ApJ, 483, 457 CrossRefGoogle Scholar
Deming, D., & Plymate, C. 1994, ApJ, 426, 382 Google Scholar
Dravins, D. 1978, Appl.Optics, 17, 404 CrossRefGoogle Scholar
Dravins, D. 1985, in Stellar Radial Velocities (IAU Coll. 88), Philip, A.G.Davis & Latham, D.W., Schenectady: L. Davis, 311 Google Scholar
Dravins, D. 1987, A&A, 172, 200 Google Scholar
Dravins, D. 1992, in Proc. of ESO Workshop on High Resolution Spectroscopy with the VLT, ESO Conf. and Workshop Proc. No. 40, Ulrich, M.-H., 55 Google Scholar
Gatewood, G.D. 1987, AJ, 94, 213 Google Scholar
Gatewood, G.D. 1996, BAAS, 28, 885 Google Scholar
Gatewood, G.D., Snyder, Hale A., Snyder, Hale D.D., Persinger, W.T., McMillan, R.S., Montani, J.L., Moore, T.L., & Perry, M.L. 1997, in Planets Beyond the Solar System and the Next Generation of Space Missions (ASP Conf. Ser., 119), Soderblom, D., San Francisco: Astron. Soc. Pacific, 41 Google Scholar
Ge, J., Angel, J.R.P., Sandler, D.G., Shelton, J.C., McCarthy, D.W., & Bürge, J.H. 1997, Proc. SPIE, 3126, 343 CrossRefGoogle Scholar
Gray, D.F., & Baliunas, S.L. 1995, ApJ, 441, 436 Google Scholar
Gray, D.F., Baliunas, S.L., Lockwood, G.W., & Skiff, B.A. 1996, ApJ, 465, 945 CrossRefGoogle Scholar
Gray, D.F., & Livingston, W.C. 1997, ApJ, 474, 802 Google Scholar
Hobbs, L.M. 1969, ApJ, 157, 135 Google Scholar
Latham, D.W., Mazeh, T., Stefanik, R.P., Mayor, M., & Burki, G. 1989, Nature, 339, 38 CrossRefGoogle Scholar
Livingston, W. 1987, in The Role of Fine-Scale Magnetic Fields on the Structure of the Solar Atmosphere, Schröter, E.-H., Vázquez, M. & Wyller, A.A., Cambridge: Cambridge Univ. Press, 14 Google Scholar
Livingston, W. 1991, in The Sun and Cool Stars: Activity, Magnetism, Dynamos. Lecture Notes in Physics #380, Tuomin, I., Moss, D., & Rüdigev, G., 246 CrossRefGoogle Scholar
Livingston, W. 1998, in preparation.Google Scholar
Marcy, G.W., & Butler, R.P. 1996, ApJ, 464, L147 Google Scholar
Mayor, M. & Queloz, D. 1995, Nature, 378, 355 Google Scholar
Mayor, M., Queloz, D., Beuzit, J.-L., Mariotti, J.-M., Naef, D., Perrier, C., & Sivan, J.-P. 1998, in preparation.Google Scholar
Mazeh, T., Latham, D.W., & Stefanik, R.P. 1996, ApJ, 466, 415 CrossRefGoogle Scholar
McMillan, R.S., Moore, T.L., Perry, M.L., & Smith, P.H. 1993, ApJ, 403, 801 CrossRefGoogle Scholar
McMillan, R.S., Moore, T.L., Perry, M.L., & Smith, P.H. 1994, Ap&SS, 212, 271 Google Scholar
McMillan, R.S., Perry, M.L., Smith, P.H., & Merline, W.J. 1988, in Fiber Optics in Astronomy (ASP Conf. Ser., 3), Barden, S.C., San Francisco: Astron. Soc. Pacific, 237 Google Scholar
McMillan, R.S., Smith, P.H., Frecker, J.E., Merline, W.J., & Perry, M.L. 1985, in Stellar Radiai Velocities (IAU Colloq. 88), Philip, A.G. Davis & Latham, D.W., Schenectady: L. Davis Press, 63 Google Scholar
McMillan, R.S., Smith, P.H., Frecker, J.E., Merline, W.J., & Perry, M.L. 1986, Proc. SPIE, 627, 2 Google Scholar
McMillan, R.S., Smith, P.H., Perry, M.L., Moore, T.L., & Merline, W.J. 1990, Proc. SPIE, 1235, 601 Google Scholar
Nordgren, T., & Hajian, A.R. 1999, these ProceedingsGoogle Scholar
Noyes, R., Jha, S., Korzennik, S., Krockenberger, M., Nisenson, P., Brown, T., Kennelly, E., & Horner, S. 1997, ApJ, 483, L111 CrossRefGoogle Scholar
Perot, A., & Fabry, C. 1899, ApJ, 9, 87 CrossRefGoogle Scholar
Saar, S.H., Butler, R.P., & Marcy, G.W. 1998, ApJ, 498, L153 Google Scholar
Saar, S.H., & Donahue, R.A. 1997, ApJ, 485, 319 CrossRefGoogle Scholar
Vaughan, J.M. 1989, The Fabry-Perot Interferometer: History, Theory, Practice, and Applications, Bristol: Adam Hilger Google Scholar
Vogt, S.S. 1992, in Proc. of ESO Workshop on High Resolution Spectroscopy with the VLT, ESO Conf. and Workshop Proc. No. 40, Ulrich, M.-H., 223 Google Scholar
Wilson, O.C. 1978, ApJ, 226, 379 Google Scholar