Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T23:05:38.883Z Has data issue: false hasContentIssue false

An experimental study of the thermolysis of hydrogen cyanide: the role of hydrothermal systems in chemical evolution

Published online by Cambridge University Press:  06 July 2020

Saúl A. Villafañe-Barajas
Affiliation:
Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd. Mx, México
María Colín-García*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd. Mx, México
Alicia Negrón-Mendoza
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd. Mx, México
Marta Ruiz-Bermejo
Affiliation:
Centro de Astrobiología (INTA-CSIC). Dpto. Evolución Molecular, Ctra. Torrejón-Ajalvir, km 4, Torrejón de Ardoz, 28850Madrid, Spain
*
Author for correspondence: María Colín-García, E-mail: mcolin@geologia.unam.mx

Abstract

Hydrogen cyanide (HCN) is considered a fundamental molecule in prebiotic chemistry experiments due to the fact that it could have an important role as raw material to form more complex molecules, as well as it could be an intermediate molecule in chemical reactions. However, the primitive scenarios in which this molecule might be available have been widely discussed. Hydrothermal systems have been considered as abiotic reactors and ideal niches for chemical evolution. Nevertheless, several experiments have shown that high temperatures and pressures could be adverse to the stability of organic molecules. Thus, it is necessary to carry out systematic experiments to study the synthesis, stability and fate of organic molecules in hydrothermal scenarios. In this work, we performed experiments focused on the stability and fate of HCN under a simple hydrothermal system scenario: the thermolysis of HCN at 100°C, at acidic and basic pH and in the presence of Mg-montmorillonite. Furthermore, we analysed the products from HCN thermolysis and highlighted the role of these chemical species as prebiotic molecules under a hydrothermal scenario.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, JM and McCabe, RW (2006) Chapter 10.2 clay minerals as catalysts. Developments in Clay Science 1, 541581.CrossRefGoogle Scholar
Andersson, E and Holm, NG (2000) The stability of some selected amino acids under attempted redox constrained hydrothermal conditions. Origins of Life and Evolution of Biospheres 30, 923.CrossRefGoogle ScholarPubMed
Arrhenius, T, Arrhenius, G and Paplawsky, W (1994) Archean geochemistry of formaldehyde and cyanide and the oligomerization of cyanohydrin. Origins of Life and Evolution of Biospheres 24, 117.CrossRefGoogle ScholarPubMed
Azamar, JA and Draganić, IG (1982) Equipo Para la Preparación de Compuestos Tóxicos en Solución Acuosa Y en Atmósfera Controlada: Cianuros Para Experimentos en Química de Radiaciones. Mexico D.F.: Informe Técnico Departamento de Química, CEN, UNAM.Google Scholar
Baross, JA and Hoffman, SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of Biospheres 15, 327345.CrossRefGoogle Scholar
Bates, AE, Lee, RW, Tunnicliffe, V and Lamare, MD (2010) Deep-sea hydrothermal vent animals seek cool fluids in a highly variable thermal environment. Nature Communications 1, 16.CrossRefGoogle Scholar
Begland, RW, Hartter, DR, Jones, FN, Sam, DJ, Sheppard, WA, Webster, OW and Weigert, FJ (1974) Hydrogen cyanide chemistry. VIII. New chemistry of diaminomaleonitrile. Heterocyclic synthesis. Journal of Organic Chemistry 39, 23412350.CrossRefGoogle Scholar
Borquez, E, Cleaves, HJ, Lazcano, A and Miller, SL (2005) An investigation of prebiotic purine synthesis from the hydrolysis of HCN polymers. Origins of Life and Evolution of Biospheres 35, 7990.CrossRefGoogle ScholarPubMed
Brandes, JA, Boctor, NZ, Cody, GD, Cooper, BA, Hazen, RM and Yoder, HS (1998) Abiotic nitrogen reduction on the early Earth. Nature 395, 365367.CrossRefGoogle ScholarPubMed
Brotherton, TK and Lynn, JW (1959) The synthesis and chemistry of cyanogen. Chemical Reviews 59, 841883.CrossRefGoogle Scholar
Charlou, JL, Donval, JP, Douville, E, Jean-Baptiste, P, Radford-Knoery, J, Fouquet, Y, Dapoigny, A and Stievenard, M (2000) Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and lucky strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chemical Geology 171, 4975.CrossRefGoogle Scholar
Chevaldonné, P, Desbruyères, D and Haître, ML (1991) Time-series of temperature from three deep-sea hydrothermal vent sites. Deep sea research part A. Oceanographic Research Papers 38, 14171430.CrossRefGoogle Scholar
Cleaves, HJ II (2008) The prebiotic geochemistry of formaldehyde. Precambrian Research 164, 111118.CrossRefGoogle Scholar
Colín-García, M, Negrón-Mendoza, A and Ramos-Bernal, S (2009) Organics produced by irradiation of frozen and liquid HCN solutions: implications for chemical evolution studies. Astrobiology 9, 279288.CrossRefGoogle ScholarPubMed
Colín-García, M, Ortega-Gutiérrez, F, Ramos-Bernal, S and Negrón-Mendoza, A (2010) Heterogeneous radiolysis of HCN adsorbed on a solid surface. Nuclear Instruments and Methods in Physics Research 619, 8385.CrossRefGoogle Scholar
Colín-García, M, Heredia, A, Negron-Mendoza, A, Ortega, F, Pi, T and Ramos-Bernal, S (2014) Adsorption of HCN onto sodium montmorillonite dependent on the pH as a component to chemical evolution. International Journal of Astrobiology 13, 310318.CrossRefGoogle Scholar
Colín-García, M, Heredia, A, Cordero, G, Camprubí, A, Negrón-Mendoza, A, Ortega-Gutiérrez, F, Beraldi, H and Ramos-Bernal, S (2016) Hydrothermal vents and prebiotic chemistry: a review. Boletín de la Sociedad Geológica Mexicana 68, 599620.CrossRefGoogle Scholar
Colín-García, M, Villafañe-Barajas, S, Camprubí, A, Ortega-Gutiérrez, F, Colás, V and Negrón-Mendoza, A (2018) 5.4 Prebiotic chemistry in hydrothermal vent systems. In Handbook of Astrobiology, Kolb, V. edn, Boca Raton, FL : Publisher: CRC Press, pp. 297329.CrossRefGoogle Scholar
Corliss, JB, Baross, JA and Hoffman, SE (1980) Submarine hydrothermal systems: a probable site for the origin of life, Corvallis, or School of Oceanography, Oregon State University. 44 pp.Google Scholar
Cruz, M (1974) Adsorption and transformation of HCN on the surface of copper and calcium montmorillonite, Clays and Clay Minerals 22, 417425.CrossRefGoogle Scholar
Demir, B, Salmas, RE, Ahunbay, MG and Yurtsever, M (2012) Monte Carlo simulations of HCN adsorption in LTA zeolites, in: Proceedings of the International Conference on Innovations in Chemical Engineering and Medical Sciences. Dubai, United Arab Emirates: IEEE pp. 1115.Google Scholar
Draganić, IG and Draganić, ZD (1980) Radiation-chemical aspects of chemical evolution and radiation chemistry of simple cyano compounds. Radiation Physics and Chemistry 15, 195201.Google Scholar
Draganić, I, Draganić, Z, Petković, L and Nikolić, A (1973) Radiation chemistry of aqueous solutions of simple RCN [hydrogen or alkyl cyanide] compounds. Journal of the American Chemical Society 95, 71937199.CrossRefGoogle Scholar
Draganić, ZD, Draganić, IG, Azamar, JA, Vujošević, SI, Berber, MD and Negrón-Mendoza, A (1985a) Radiation chemistry of overirradiated aqueous solutions of hydrogen cyanide and ammonium cyanide. Journal of Molecular Evolution 21, 356363.CrossRefGoogle Scholar
Draganić, ZD, Vujošević, SI, Negrón-Mendoza, A, Azamar, JA and Draganić, IG (1985b) Radiation chemistry of a multicomponent aqueous system relevant to chemistry of cometary nuclei. Journal of Molecular Evolution 22, 175187.CrossRefGoogle Scholar
Dzombak, DA, Ghosh, RS and Wong-Chong, GM (2006) Cyanide in Water and Soil: Chemistry, Risk, and Management. Boca Raton: CRC/Taylor & Francis, 601 pp.Google Scholar
Fábián, B, Szőri, M and Jedlovszky, P (2014) Floating patches of HCN at the surface of their aqueous solutions – Can they make ‘HCN world’ plausible? Journal of Physical Chemistry C 118, 2146921482.CrossRefGoogle Scholar
Ferris, JP and Edelson, EH (1978) Chemical evolution. 31. Mechanism of the condensation of cyanide to hydrogen cyanide oligomers. Journal of Organic Chemistry 43, 39893995.CrossRefGoogle Scholar
Ferris, JP and Hagan, WJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40, 10931120.CrossRefGoogle ScholarPubMed
Ferris, JP and Ryan, TJ (1973) Chemical evolution. XIV. Oxidation of diaminomaleonitrile and its possible role in hydrogen cyanide oligomerization. Journal of Organic Chemistry 38, 33023307.CrossRefGoogle Scholar
Ferris, JP, Sanchez, RA and Orgel, LE (1968) Studies in prebiotic synthesis. Journal of Molecular Biology 33, 693704.CrossRefGoogle ScholarPubMed
Ferris, JP, Donner, DB and Lobo, AP (1973) Possible role of hydrogen cyanide in chemical evolution: investigation of the proposed direct synthesis of peptides from hydrogen cyanide. Journal of Molecular Biology 74, 499510.CrossRefGoogle ScholarPubMed
Ferris, JP, Wos, JD, Nooner, DW and Oró, J (1974a) Chemical evolution: XXI. The amino acids released on hydrolysis of HCN oligomers. Journal of Molecular Evolution 3, 225231.CrossRefGoogle Scholar
Ferris, JP, Wos, JD, Ryan, TJ, Lobo, AP and Donner, DB (1974b) Biomolecules from HCN. Origins of Life 5, 153157.CrossRefGoogle Scholar
Ferris, JP, Edelson, EH, Mount, NM and Sullivan, AE (1979) The effect of clays on the oligomerization of HCN. Journal of Molecular Evolution 13, 317330.CrossRefGoogle ScholarPubMed
Ferris, JP, Hagan, WJ, Alwis, KW and McCrea, J (1982) Chemical evolution 40. Clay-mediated oxidation of diaminomaleonitrile. Journal of Molecular Evolution 18, 304309.CrossRefGoogle ScholarPubMed
Ferus, M, Kubelík, P, Knížek, A, Pastorek, A, Sutherland, J and Civiš, S (2017) High energy radical chemistry formation of HCN-rich atmospheres on early Earth. Scientific Reports 7, 19.CrossRefGoogle ScholarPubMed
Fornari, DJ, Shank, T, Von Damm, KL, Gregg, TKP, Lilley, M, Levai, G, Bray, A, Haymon, RM, Perfit, MR and Lutz, R (1998) Time-series temperature measurements at high-temperature hydrothermal vents, east pacific rise 9°49′–51′N: evidence for monitoring a crustal cracking event. Earth and Planetary Science Letters 160, 419431.CrossRefGoogle Scholar
Frenkel, M (1974) Surface acidity of montmorillonites. Clays and Clay Minerals 22, 435441.CrossRefGoogle Scholar
Holm, NG (ed.) (1992) Marine Hydrothermal Systems and the Origin of Life. Dordrecht, The Netherlands: Springer, 250 pp.CrossRefGoogle ScholarPubMed
Holm, NG (2012) The significance of Mg in prebiotic geochemistry. Geobiology 10, 269279.CrossRefGoogle ScholarPubMed
Holm, NG and Andersson, E (2005) Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review. Astrobiology 5, 444460.CrossRefGoogle ScholarPubMed
Holm, NG and Neubeck, A (2009) Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochemical Transactions 10, 111.CrossRefGoogle ScholarPubMed
Islam, S and Powner, MW (2017) Prebiotic systems chemistry: complexity overcoming clutter. Chem 2, 470501.CrossRefGoogle Scholar
Islam, MN, Kaneko, T and Kobayashi, K (2003) Reaction of amino acids in a supercritical water-flow reactor simulating submarine hydrothermal systems. Bulletin of the Chemical Society of Japan 76, 11711178.CrossRefGoogle Scholar
Jamis, J, Drljaca, A, Spiccia, L and Smith, TD (1995) FTIR spectroscopic study of the adsorption of hydrogen cyanide by metal-oxide pillared clays. Chemistry of Materials 7, 20782085.CrossRefGoogle Scholar
Keefe, AD and Miller, SL (1996) Was ferrocyanide a prebiotic reagent? Origins of Life and Evolution of Biospheres 26, 111129.CrossRefGoogle ScholarPubMed
Kemp, IA and Kohnstam, G (1956) The decomposition of inorganic cyanates in water. Journal of Chemical Society (Resumed) 191, 900911.CrossRefGoogle Scholar
Konn, C, Charlou, JL, Holm, NG and Mousis, O (2015) The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic ridge. Astrobiology 15, 381399.CrossRefGoogle ScholarPubMed
Kotdawala, RR, Kazantzis, N and Thompson, RW (2008) Molecular simulation studies of adsorption of hydrogen cyanide and methyl ethyl ketone on zeolite NaX and activated carbon. Journal of Hazardous Materials 159, 169176.CrossRefGoogle ScholarPubMed
LaRowe, DE and Regnier, P (2008) Thermodynamic potential for the abiotic synthesis of adenine, cytosine, guanine, thymine, uracil, ribose, and deoxyribose in hydrothermal systems. Origins of Life and Evolution of Biospheres 38, 383397.CrossRefGoogle ScholarPubMed
Ma, Y, Wang, F, Wang, X, Ning, P, Jing, X and Cheng, J (2017) The hydrolysis of hydrogen cyanide over Nb/La–TiOx catalyst. Journal of the Taiwan Institute of Chemical Engineers 70, 141149.CrossRefGoogle Scholar
Marín-Yaseli, MR, González-Toril, E, Mompeán, C and Ruiz-Bermejo, M (2016) The role of aqueous aerosols in the ‘glyoxylate scenario’: an experimental approach. Chemistry – A European Journal 22, 1278512799.CrossRefGoogle Scholar
Matthews, CN (2005) The HCN world. In Seckbach, J (ed.), Origins. Dordrecht: Kluwer Academic Publishers, pp. 121135.CrossRefGoogle Scholar
Matthews, CN and Minard, RD (2006) Hydrogen cyanide polymers, comets and the origin of life. Faraday Discussions 133, 393401.CrossRefGoogle ScholarPubMed
McDermott, JM, Seewald, JS, German, CR and Sylva, SP (2015) Pathways for abiotic organic synthesis at submarine hydrothermal fields. PNAS 112, 76687672.CrossRefGoogle ScholarPubMed
Ménez, B, Pisapia, C, Andreani, M, Jamme, F, Vanbellingen, QP, Brunelle, A, Richard, L, Dumas, P and Réfrégiers, M (2018) Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 5963.CrossRefGoogle ScholarPubMed
Menor-Salván, C, Ruiz-Bermejo, DM, Guzmán, MI, Osuna-Esteban, S and Veintemillas-Verdaguer, S (2009) Synthesis of pyrimidines and triazines in ice: implications for the prebiotic chemistry of nucleobases. Chemistry – A European Journal 15, 44114418.CrossRefGoogle ScholarPubMed
Miller, SL (1987) Which organic compounds could have occurred on the prebiotic Earth? Cold Spring Harbor Symposium on Quantitative Biology 52, 1727.CrossRefGoogle ScholarPubMed
Miller, SL and Bada, JL (1988) Submarine hot springs and the origin of life. Nature 334, 609611.CrossRefGoogle ScholarPubMed
Mittelstaedt, E, Escartín, J, Gracias, N, Olive, J-A, Barreyre, T, Davaille, A, Cannat, M and Garcia, R (2012) Quantifying diffuse and discrete venting at the tour Eiffel vent site, lucky strike hydrothermal field. Geochemistry, Geophysics, Geosystems 13, 118.CrossRefGoogle Scholar
Miyakawa, S, Cleaves, HJ and Miller, SL (2002) The cold origin of life: a. Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Origins of Life and Evolution of Biospheres 32, 195208.CrossRefGoogle ScholarPubMed
Mukhin, LEV (1974) Evolution of organic compounds in volcanic regions. Nature 251, 5051.CrossRefGoogle Scholar
Mumma, MJ and Charnley, SB (2011) The chemical composition of comets – emerging taxonomies and natal heritage. Annual Review of Astronomy and Astrophysics 49, 471524.CrossRefGoogle Scholar
Nanba, T, Obuchi, A, Akaratiwa, S, Liu, S, Uchisawa, J and Kushiyama, S (2000) Catalytic hydrolysis of HCN over H-ferrierite. Chemistry Letters 29, 986987.CrossRefGoogle Scholar
Negrón-Mendoza, A, Draganić, ZD, Navarro-González, R and Draganić, IG (1983) Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles. Radiation Research 95, 248.CrossRefGoogle Scholar
Negrón-Mendoza, A, Chacón, BE, Perezgasga, L and Torres, JL (1986) Determinación de Urea por el Método de DAM. Mexico: Informe Técnico Q-02–86, CEN-UAM, 7 pp.Google Scholar
Negrón-Mendoza, A, Ramos-Bernal, S, Cruz, E and Juárez, JM (2001) Radiolysis of HCN in heterogeneous phase. Radiation Physics and Chemistry 61, 771772.CrossRefGoogle Scholar
Nelson, WL and Engelder, CJ (1925) The thermal decomposition of formic acid. Journal of Physical Chemistry 30, 470475.CrossRefGoogle Scholar
Nikalje, MD, Phukan, P and Sudalai, A (2000) Recent advances in clay-catalyzed organic transformations. Organic Preparations and Procedures International 32, 140.CrossRefGoogle Scholar
Niketić, V, Draganić, ZD, Nešković, S, Jovanović, S and Draganić, IG (1983) Radiolysis of aqueous solutions of hydrogen cyanide (pH~6): compounds of interest in chemical evolution studies. Journal of Molecular Evolution 19, 184191.CrossRefGoogle Scholar
Ogasawara, H, Yoshida, A, Imai, E, Honda, H, Hatori, K and Matsuno, K (2000) Synthesizing oligomers from monomeric nucleotides in simulated hydrothermal environments. Origins of Life and Evolution of Biospheres 30, 519526.CrossRefGoogle ScholarPubMed
Ogata, Y, Imai, E, Honda, H, Hatori, K and Matsuno, K (2000) Hydrothermal circulation of seawater through hot vents and contribution of interface chemistry to prebiotic synthesis. Origins of Life and Evolution of Biospheres 30, 527537.CrossRefGoogle ScholarPubMed
Parkos, D, Pikus, A, Alexeenko, A and Melosh, HJ (2016) HCN production from impact ejecta on the early Earth, in: AIP Conference Proceedings. AIP Publishing, 1786. 170001-1-17000-8.Google Scholar
Pizzarello, S (2012) Hydrogen cyanide in the Murchison meteorite. Astrophysical Journal Letters. 754, L27. 13Google Scholar
Rimmer, PB and Rugheimer, S (2019) Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 329, 124131.CrossRefGoogle Scholar
Robertson, MP and Miller, SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375, 772774.CrossRefGoogle ScholarPubMed
Ruiz-Bermejo, M, de la Fuente, JL, Rogero, C, Menor-Salván, C, Osuna-Esteban, S and Martín-Gago, JA (2012) New insights into the characterization of ‘insoluble black HCN polymers’. Chemistry and Biodiversity 9, 2540.CrossRefGoogle ScholarPubMed
Ruiz-Bermejo, M, Zorzano, M-P and Osuna-Esteban, S (2013) Simple organics and biomonomers identified in HCN polymers: an overview. Life (Chicago, IL) 3, 421448.Google ScholarPubMed
Sanchez, RA, Ferris, JP and Orgel, LE (1967) Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. Journal of Molecular Biology 30, 223253.Google ScholarPubMed
Sanchez, RA, Ferris, JP and Orgel, LE (1968) Studies in prebiotic synthesis. Journal of Molecular Biology 38, 121128.CrossRefGoogle ScholarPubMed
Schäfer, S and Bonn, B (2000) Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidised combustion. Part 1. Homogeneous reactions. Fuel 79, 12391246.CrossRefGoogle Scholar
Schoonen, MAA and Xu, Y (2001) Nitrogen reduction under hydrothermal vent conditions: implications for the prebiotic synthesis of C-H-O-N compounds. Astrobiology 1, 133142.CrossRefGoogle ScholarPubMed
Schrenk, MO, Kelley, DS, Bolton, SA and Baross, JA (2004) Low archaeal diversity linked to subseafloor geochemical processes at the lost city hydrothermal field, Mid Atlantic Ridge. Environmental Microbiology 6, 10861095.CrossRefGoogle ScholarPubMed
Schulte, M and Shock, E (1995) Thermodynamics of Strecker synthesis in hydrothermal systems. Origins of Life and Evolution of Biospheres 25, 161173.CrossRefGoogle ScholarPubMed
Schwartz, AW, Voet, AB and Veen, M (1984) Recent progress in the prebiotic chemistry of HCN. Origins of Life and Evolution of the Biosphere 14, 9198.CrossRefGoogle ScholarPubMed
Shock, EL (1992) Hydrothermal organic synthesis experiments. In Holm, NG (ed.), Marine Hydrothermal Systems and the Origin of Life. Dordrecht, The Netherlands: Springer, pp. 135146.CrossRefGoogle Scholar
Shriner, RM, Fuson, C, Reynold, C, Curtin, Y, David, C and Dominguez, XA Tr (1982) Identificacion Sistemática de Compuestos Orgánicos. Mexico: Limusa, 479 pp.Google Scholar
Stribling, R and Miller, SL (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Origins of Life and Evolution of Biospheres 17, 261273.CrossRefGoogle ScholarPubMed
Sutherland, JD (2016) The origin of life – out of the blue. Angewandte Chemie International Edition 55, 104121.CrossRefGoogle ScholarPubMed
Thissen, H, Koegler, A, Salwiczek, M, Easton, CD, Qu, Y, Lithgow, T and Evans, RA (2015) Prebiotic-chemistry inspired polymer coatings for biomedical and material science applications. NPG Asia Materials 7, e225. 19 pp.CrossRefGoogle Scholar
Tian, F, Kasting, JF and Zahnle, K (2011) Revisiting HCN formation in Earth's early atmosphere. Earth and Planetary Science Letters 308, 417423.CrossRefGoogle Scholar
Toh, RJ, Evans, R, Thissen, H, Voelcker, NH, d'Ischia, M and Ball, V (2019) Deposition of aminomalononitrile-based films: kinetics, chemistry, and morphology. Langmuir 35, 98969903.CrossRefGoogle ScholarPubMed
Voet, AB and Schwartz, AW (1983) Prebiotic adenine synthesis from HCN – evidence for a newly discovered major pathway. Bioorganic Chemistry 12, 817.CrossRefGoogle Scholar
Vujošević, SI, Negrón-Mendoza, A and Draganić, ZD (1990) Radiation-induced polymerization in dilute aqueous solutions of cyanides. Origins of Life and Evolution of Biospheres 20, 4954.CrossRefGoogle Scholar
Wang, YL, Lee, HD, Beach, MW and Margerum, DW (1987) Kinetics of base hydrolysis of cyanogen and 1-cyanoformamide. Inorganic Chemistry 26, 24442449.CrossRefGoogle Scholar
Yu, J and Savage, PE (1998) Decomposition of formic acid under hydrothermal conditions. Industrial & Engineering Chemistry Research 37, 210.CrossRefGoogle Scholar
Yuasa, S and Ishigami, M (1977) Geochemically possible condensation of hydrogen cyanide in the presence of divalent metal compounds. Geochemical Journal 11, 247252.CrossRefGoogle Scholar
Zhang, X, Tian, G, Gao, J, Han, M, Su, R, Wang, Y and Feng, S (2017) Prebiotic synthesis of glycine from ethanolamine in simulated Archean alkaline hydrothermal vents. Origins of Life and Evolution of Biospheres 47, 413425.CrossRefGoogle ScholarPubMed
Zhao, Q, Tian, S, Yan, L, Zhang, Q and Ning, P (2015) Novel HCN sorbents based on layered double hydroxides: sorption mechanism and performance. Journal of Hazardous Materials 285, 250258.CrossRefGoogle ScholarPubMed
Zubay, G (2000) Origins of Life: On Earth and in the Cosmos. Academic Press, 564 ppGoogle Scholar