Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T23:41:06.716Z Has data issue: false hasContentIssue false

Microstructure and elemental composition of the Tagish Lake meteorite and its astrobiological implications

Published online by Cambridge University Press:  20 November 2009

Kani Rauf
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK
Anthony Hann
Affiliation:
School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
Chandra Wickramasinghe*
Affiliation:
Cardiff Centre for Astrobiology, Cardiff University, Cardiff CF10 3DY, UK

Abstract

Tagish Lake meteorite, which fell in January 2000 in Canada, has provided a sample of pristine cosmic materials for laboratory studies. It is made up of loosely formed aggregates, making it one of the most friable carbonaceous chondrites. Its complex structure is composed of plaquettes of crystalized minerals, hexagon-shaped metals, chondrules and granules, all of which are embedded in a matrix of fine grains and fibril-like materials. Those components with sizes larger than 250 nm in diameter are affected to varying degrees by hydrothermal reactions, whereas the majority of smaller bodies (<350 nm in diameter) appear unscathed despite severe aqueous alterations on the parent body. A high population of granules (100–300 nm in diameter) consist of a wall (20–40 nm in thickness) and a larger core; the former is rich in organic elements, such as carbon, oxygen and sulfur, and the core contains Ni-Fe-Mg rich silicates. The organic matter has aromatic and aliphatic characteristics, and such evidence suggests that the granules may be the carriers of large organic species with distinct astrobiological implications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mufti, S.A.R. (1985). Laboratory studies relating to a bacterial model of interstellar grains, PhD thesis, University College Cardiff, UK.Google Scholar
Bell, J.F., Davis, D.R., Hartmann, W.K. & Gaffey, M.J. (1989). In Asteroids II, Univ. Arizona Press, Tucson, Arizona, USA921945.Google Scholar
Brown, P.G. et al. (2000). Science 290, 320.CrossRefGoogle ScholarPubMed
Busemann, H., Young, A.F., Alexander, C.M.O'D., Hoppe, P., Mukhopadhyay, S. & Nittler, L.R. (2006). Science 312, 727.CrossRefGoogle Scholar
Cataldo, F. & Keheyan, Y. (2003). Int. J. Astrobiology 2(1), 4150.CrossRefGoogle Scholar
Claus, G. & Nagy, B. (1961). Nature 192, 594.CrossRefGoogle Scholar
Cody, G.D. & Alexander, C.M.O'D. (2005). Geochim. Cosmochim. Acta 69, 1085.CrossRefGoogle Scholar
Garvie, L.A.J. & Buseck, P.R. (2006). Lunar Planet. Sci. 37, Abstract 1455.Google Scholar
Grady, M.M., Verchovsky, A.B., Franchi, I.A., Wright, I.P., & Pillinger, C.T. (2002). Meteoritics & Planet. Sci. 37, 713735.CrossRefGoogle Scholar
Hayatsu, R. & Anders, E. (1981). Top. Curr. Chem. 99, 137.CrossRefGoogle Scholar
Hiroi, T., Zolensky, M.E. & Pieters, C.M. (2001). Science 293, 2234.CrossRefGoogle Scholar
Hoover, R.B. (2009). Proc. SPIE, 7441, doi: 10.1117/12.832643.Google Scholar
Hoover, R.B., Jerman, G., Rozanov, A.Y. & Davies, P.C.W. (2003). Proc. SPIE 4859, 1531.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (2000). Astronomical Origins of Life. Kluwer Academic Publishers, Dordrect, The Netherlands.CrossRefGoogle Scholar
Hoyle, F. & Wickramasinghe, N.C. (1982). Proofs that Life is Cosmic. Mem Inst Fund Studies, Sri Lanka (http://www.astrobiology.cf.ac.uk/proofs...pdf)Google Scholar
Hudgins, D.M. and Allamandola, L.J. (1997). J. Phys. Chem. A, 101(19), 34723477.CrossRefGoogle Scholar
Llorca, J. (2004). Int. Microbiol. 7, 239248.Google Scholar
Martins, Z., Botta, O., Fogel, M.L., Sephton, M.A., Glavin, D.P., Watson, J.S., Dworkin, J.P., Schwartz, A.W. & Ehrenfreund, P. (2008). Earth Planetary Sci. 270, 130136.CrossRefGoogle Scholar
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. & Zare, R.N. (1996). Science 273, 924930.CrossRefGoogle Scholar
McSween, H. Jr. (1989). Meteorite and their parent planets. Cambridge University Press, Cambridge, UK.Google Scholar
Nakamura, K., Messenger, S., Keller, L.P., Clemett, S.J. and Zolensky, M.E. (2006). Science 314, 1439.CrossRefGoogle Scholar
Nakamura, K., Zolensky, M.E., Tomita, S., Nakashima, S. and Tomeoka, K. (2002). Int. J. Astrobiology 1, 179.CrossRefGoogle Scholar
Papoular, R., Ellis, K., Guillois, O., Reynaud, C., & Nenner, I. (1993). J. Chem. Soc. Farady Trans., 89(13), 22892295.CrossRefGoogle Scholar
Pizzarello, S., Huang, Y., Becker, L., Poreda, R.J., Nieman, R.A., Copper, G. and Williams, M. (2001). Science 293, 2234.CrossRefGoogle Scholar
Rauf, K. & Wickramasinghe, C. (2009). Int. J. Astrobiology 8, 16.Google Scholar
Wickramasinghe, J., Wickramasinghe, C. & Napier, W.M. (2009). Comets and the Origin of Life. World Scientific Publishing Co., Singapore.CrossRefGoogle Scholar
Wooden, D.H., Harker, D.E. and Brearley, A.J. (2005). ASP Conf. Ser. 341, 774.Google Scholar
Zolensky, M.E., Nakamura, K., Gounelle, M., Mikouchi, T., Kasama, T., Tachikawa, O., & Tonui, E. (2002). Meteoritics Planet. Sci. 37, 737762.CrossRefGoogle Scholar