Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T09:21:39.983Z Has data issue: false hasContentIssue false

Determination of multilayer thicknesses of GaAs/AlAssuperlattice by grazing incidence X-ray reflectivity

Published online by Cambridge University Press:  07 November 2013

Get access

Abstract

The grazing incidence X-ray reflectivity is used to determine the multilayer thickness ofGaAs/AlAs supperlattice. The measurement process includes the fitting model and themeasurement conditions (different powers of 45 kV × 40 mA, 40 kV × 40 mA and 35 kV × 40mA, different step sizes of 0.005°, 0.008° and 0.010°,and different times per step of 1 s, 2 s, 3 s). In order to obtain the valid measurementprocess, the combined standard deviation is used as the normal of the fitting resultsselection. As a result, the measurement condition of 0.008° step size and 2 stime per step with the power 40 kV × 40 mA is selectable with the operation stability offacilities and smaller error.

Type
Research Article
Copyright
© EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, C.-S., Koo, T.-K., Choi, Y.-D., Observation of an Interlayer in a Nano-Scale SiO2 Layer on Si Substrate by X-Ray Reflectivity (XRR) Analysis, Solid State Phenom. 124–126, 16891692 (2007) CrossRefGoogle Scholar
Schug, C., York, B., Marien, J., Blank, H.-R., JCPDS-International Center for Diffraction Data 2001, Adv. X-Ray Anal. 44, 295301 (2001) Google Scholar
Friedbacher, G., Hansma, P.K., Schwarzbach, D., Grasserbauer, M., Nickel, H., Investigation of aluminum gallium arsenide/gallium arsenide superlattices by atomic force microscopy, Anal. Chem. 64, 17601762 (1992) CrossRefGoogle Scholar
Rickerby, D.G., Friesen, T., Microstructural examination of layered coatings by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, Mater. Charact. 36, 213223 (1996) CrossRefGoogle Scholar
Bowen, D.K., Wormington, M., Characterization of materials by grazing-incidence X-ray scattering, Adv. X-Ray Anal. 36, 171 (1993) Google Scholar
Stoev, K.N., Sakurai, K., Review on grazing incidence X-ray spectrometry and reflectometry, Spectrochim. Acta Part B 54, 41 (1999) CrossRefGoogle Scholar
Chen, T.C., Peng, C.-Y., Tseng, C.-H., Liao, M.-H., Chen, M.-H., Wu, C.-I., Chern, M.-Y., Tzeng, P.-J., Liu, C.W., Characterization of the Ultrathin HfO2 and Hf-Silicate Films Grown by Atomic Layer Deposition, IEEE Trans. Electron Devices 54, 759766 (2007) CrossRefGoogle Scholar
Ren, L., Cui, J., The Angle Traceablity of X-ray Diffraction, Metrol. Technol. 3, 4851 (2012) Google Scholar
Ren, L., Gao, H., The X-ray Wavelength Traceablity of X-ray Diffraction, Metrol. Technol. 12, 34 (2012) Google Scholar
Xia, W., Minch, B.A., Carducci, M.D., Armstrong, N.R., LB films of rodlike phthalocyanine aggregates: Specular X-ray reflectivity studies of the effect of interface modification on coherence and microstructure, Langmuir 20, 79988005 (2004) CrossRefGoogle Scholar
Cecchet, F., De Meersman, B., Demoustier-Champagne, S., Nysten, B., Jonas, A.M., One step growth of protein antifouling surfaces: monolayers of poly (ethylene oxide)(PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces, Langmuir 22, 11731181 (2006) CrossRefGoogle Scholar
Basu, S., Satija, S.K., In-situ X-ray Reflectivity Study of Alkane Films Grown from the Vapor Phase, Langmuir 23, 83318335 (2007) CrossRefGoogle ScholarPubMed
Hansen, C.R., Sørensen, T.J., Glyvradal, M., Larsen, J., Eisenhardt, S.H., Bjørnholm, T., Nielsen, M.M., Feidenhans’l, R., Laursen, B.W., Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices, Nano Lett. 9, 10521057 (2009) CrossRefGoogle ScholarPubMed
Briscoe, W.H., Chen, M., Dunlop, I.E., Klein, J., Penfold, J., Jacobs, R.M.J., Applying grazing incidence X-ray reflectometry (XRR) to characterising nanofilms on mica, J. Coll. Interf. Sci. 306, 459463 (2007) CrossRefGoogle ScholarPubMed
Durand, O., Berger, V., Bisaro, R., Bouchier, A., De Rossi, A., Marcadet, X., Prevot, I., Determination of thicknesses and interface roughnesses of GaAs-based and InAs/AlSb-based heterostructures by X-ray reflectometry, Mater. Sci. Semicond. Process. 4, 327330 (2001) CrossRefGoogle Scholar
Gibaud, A., Hazra, S., X-ray reflectivity and diffuse scattering, Curr. Sci. 78, 14671477 (2000) Google Scholar
Rusli, Chew, K., Yoon, S.F., Chan, H.K., Ng, C.F., Zhang, Q., Ahn, J., Determination of Properties of Thin Films Using X-ray Reflectivity, Int. J. Mod. Phys. B 16, 1072 (2002) CrossRefGoogle Scholar
Parratt, L.G., Surface Studies of Solids by Total Reflection of X-Rays, Phys. Rev. 95, 395369 (1954) CrossRefGoogle Scholar
H. Quan, Y.Z. Han, Reference Materials and Their Applications, 2nd edn. (Chinese Standard Press, Beijing, 2003)