Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T18:19:23.150Z Has data issue: false hasContentIssue false

Current trends and future perspective of designing on-chip antennas

Published online by Cambridge University Press:  06 June 2022

Harshavardhan Singh*
Affiliation:
Microwave and Antenna Research Lab, Department of Electronics & Communication Engineering, National Institute of Technology Durgapur, Durgapur 713209, India
Sujit Kumar Mandal
Affiliation:
Microwave and Antenna Research Lab, Department of Electronics & Communication Engineering, National Institute of Technology Durgapur, Durgapur 713209, India
*
Author for correspondence: Harshavardhan Singh, E-mail: hsingh@ieee.org

Abstract

With the evolution of 5G and 6G network architectures, the demand for highly compact system-on-chip-based devices with high data transfer capabilities has been increased significantly. While the advancement of very large-scale integration technology with the continuous scaling of complementary metal–oxide–semiconductor nodes put forward to integrate different functional modules of a complete system on a single IC board, the antenna being the largest component still remains outside of the chip. Integration of the antenna and other functional modules of a system on the same chip leads to produce a really compact and economical design. Though on-chip antenna (OCAs) have several other advantages and emerging applications, they have some design challenges in terms of low gain due to losses in the substrate, requirement of miniaturization at lower microwave frequencies (LMFs) (particularly, below 10 GHz), unavailability of proper design rules, etc. In this paper, analyzing the design challenges of OCAs, their current research trends and future perspective applications are discussed.

Type
Antenna Design, Modeling and Measurements
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reyes, AC, El-Ghazaly, SM, Dorn, S, Dydyk, M and Schroder, DK, Silicon as a microwave substrate, in 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 94CH3389-4), IEEE, 1994, 1759–1762.Google Scholar
Kim, K and Ko, K, Integrated dipole antennas on silicon substrates for intra-chip communication, in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010), Vol. 3, IEEE, 1999, 1582–1585.Google Scholar
Radiom, S, Mohammadpour-Aghdam, K, Vandenbosch, GAE and Gielen, G (2010) A monolithically integrated on-chip antenna in 0.18 μm standard CMOS technology for far-field short-range wireless powering. IEEE Antennas and Wireless Propagation Letters, 9, 631633.CrossRefGoogle Scholar
Popplewell, P, Karam, V, Shamim, A, Rogers, J, Roy, L and Plett, C (2008) A 5.2-GHz BFSK transceiver using injection-locking and an on-chip antenna. IEEE Journal of Solid-State Circuits, 43, 981990.CrossRefGoogle Scholar
Behdad, N, Shi, D, Hong, W, Sarabandi, K and Flynn, MP, A 0.3 mm2 miniaturized X-band on-chip slot antenna in 0.13 μm CMOS, in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.CrossRefGoogle Scholar
Malmqvist, R, Alfredsson, M, Gustafsson, A and Ouacha, A, A 7.9–9.7 GHz on-chip radar receiver front-end for future adaptive x-band smart skin array antennas, in 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), Vol. 3, IEEE, 2002, 1431–1434.Google Scholar
Guclu, C, Sloan, J, Pan, S and Capolino, F, High impedance surface as an antenna without a dipole on top, in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 2011, 1028–1031.CrossRefGoogle Scholar
Babakhani, A, Guan, X, Komijani, A, Natarajan, A and Hajimiri, A (2006) A 77-GHz phased-array transceiver with on-chip antennas in silicon: receiver and antennas. IEEE Journal of Solid-State Circuits, 41, 27952806.CrossRefGoogle Scholar
Hsu, S-S, Wei, K-C, Hsu, C-Y and Ru-Chuang, H (2008) A 60-GHz millimeter-wave CPW-fed yagi antenna fabricated by using 0.18 μm CMOS technology. IEEE Electron Device Letters, 29, 625627.Google Scholar
Baek, Y-H, Truong, LH, Park, S-W, Lee, S-J, Chae, Y-S, Rhee, E-H, Park, H-C and Rhee, J-K (2009) 94-GHz log-periodic antenna on GaAs substrate using air-bridge structure. IEEE Antennas and Wireless Propagation Letters, 8, 909911.CrossRefGoogle Scholar
Sankaran, S, Mao, C, Seok, E, Shim, D, Cao, C, Han, R, Arenas, DJ, Tanner, DB, Hill, S, Hung, C-M and O, KK (2009) Towards terahertz operation of CMOS. IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 202203, 203a, doi: 10.1109/ISSCC.2009.4977378.CrossRefGoogle Scholar
Öjefors, E and Pfeiffer, UR, A 650 GHz SiGe receiver front-end for terahertz imaging arrays. in 2010 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2010, 430–431.CrossRefGoogle Scholar
Park, J-D, Kang, S and Niknejad, AM, A 0.38 THz fully integrated transceiver utilizing quadrature push-push circuitry. in 2011 Symposium on VLSI Circuits-Digest of Technical Papers, IEEE, 2011, 22–23.CrossRefGoogle Scholar
Cheema, HM and Shamim, A (2013) The last barrier: on-chip antennas. IEEE Microwave Magazine, 14, 7991.CrossRefGoogle Scholar
Yordanov, H and Russer, P (2009) Integrated on-chip antennas for communication on and between monolithic integrated circuits. International Journal of Microwave and Wireless Technologies, Cambridge University Press, 1, 309314.CrossRefGoogle Scholar
Volakis, JL, Chen, CC and Fujimoto, K (2010) Small Antennas: Miniaturization Techniques & Applications. New York City: McGraw-Hill.Google Scholar
Floyd, BA, Hung, C-M and O, KK, (2002) Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters. IEEE Journal of Solid-State Circuits, 37, 543552. doi: 10.1109/4.997846.CrossRefGoogle Scholar
Bialkowski, M and Abbosh, A (2010) Wireless intrachip/interchip interconnections utilising tapered slot antennas for ultra-large-scale integration technology. IET Microwaves, Antennas & Propagation, 4, 16651671.CrossRefGoogle Scholar
Jiang, B, Mao, J and Yin, W-Y (2008) An efficient ladder reflector antenna for interchip communications. IEEE Antennas and Wireless Propagation Letters, 7, 777780.CrossRefGoogle Scholar
Pepe, D, Vallozzi, L, Rogier, H and Zito, D (2013) Planar differential antenna for short-range UWB pulse radar sensor. IEEE Antennas and Wireless Propagation Letters, 12, 15271530.CrossRefGoogle Scholar
Kucharski, M, Ahmad, WA, Ng, HJ and Kissinger, D (2020) Monostatic and bistatic G-band BiCMOS radar transceivers with on-chip antennas and tunable Tx-to-Rx leakage cancellation. IEEE Journal of Solid-State Circuits, 63, 899913.Google Scholar
Chen, X, Yeoh, WG, Choi, YB, Li, H and Singh, R (2008) A 2.45-GHz near-field RFID system with passive on-chip antenna tags. IEEE Transactions on Microwave Theory and Techniques, 56, 13971404.CrossRefGoogle Scholar
Radiom, S, Baghaei-Nejad, M, Aghdam, K, Vandenbosch, GAE, Zheng, L-R and Gielen, GGE (2010) Far-field on-chip antennas monolithically integrated in a wireless-powered 5.8-GHz downlink/UWB uplink RFID tag in 0.18 μm standard CMOS. IEEE Journal of Solid-State Circuits, 45, 17461758.CrossRefGoogle Scholar
Le, H, Fong, N and Luong, HC, RF energy harvesting circuit with on-chip antenna for biomedical applications. in International Conference on Communications and Electronics 2010, IEEE, 2010, 115–117.Google Scholar
Rodrigues, FJO, Gonçalves, LM and Mendes, PM, Electrically small and efficient on-chip MEMS antenna for biomedical devices. in 2010 International Workshop on Antenna Technology (iWAT), IEEE, 2010, 1–4.CrossRefGoogle Scholar
Mandal, S, Mandal, SK and Mal, AK, On-chip antennas using standard CMOS technology: A brief overview. in International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), 2017, 74–78.CrossRefGoogle Scholar
Chen, I-S, Chiou, H-K and Chen, N-W (2009) V-band on-chip dipole-based antenna. IEEE Transactions on Antennas and propagation, 57, 28532861.CrossRefGoogle Scholar
Passiopoulos, G, Nam, S, Georgiou, A, Ashtiani, AE, Robertson, ID and Grindrod, EA, V-band single chip, direct carrier BPSK modulation transmitter with integrated patch antenna. in 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192), Vol. 1, IEEE, 1998, 305–308.Google Scholar
Neculoiu, D, Muller, A, Tang, K, Laskin, E and Voinigescu, SP, 160 GHz on-chip dipole antenna structure in silicon technology. in 2007 International Semiconductor Conference, Vol. 1, IEEE, 2007, 245–248.CrossRefGoogle Scholar
Ojefors, E, Sonmez, E, Chartier, S, Lindberg, P, Schick, C, Rydberg, A and Schumacher, H (2007) Monolithic integration of a folded dipole antenna with a 24-GHz receiver in SiGe HBT technology. IEEE Transactions on Microwave Theory and Techniques, 55, 14671475.CrossRefGoogle Scholar
Moore, GE (2006) Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter 11, 3335. doi: 10.1109/N-SSC.2006.4785860.CrossRefGoogle Scholar
Hou, D, Hong, W, Goh, W-L, Chen, J, Xiong, Y-Z, Hu, S and Madihian, M (2014) D-band on-chip higher-order-mode dielectric-resonator antennas fed by half-mode cavity in CMOS technology. IEEE Antennas and Propagation Magazine, 56, 8089.CrossRefGoogle Scholar
Burasa, P, Djerafi, T, Constantin, NG and Wu, K (2017) On-chip dual-band rectangular slot antenna for single-chip millimeter-wave identification tag in standard CMOS technology. IEEE Transactions on Antennas and Propagation, 65, 38583868.CrossRefGoogle Scholar
Sallam, MO, Serry, M, Sedky, S, Shamim, A, De Raedt, W, Vandenbosch, GAE and Soliman, EA (2015) Micromachined on-chip dielectric resonator antenna operating at 60 GHz. IEEE Transactions on Antennas and Propagation, 63, 34103416.CrossRefGoogle Scholar
Deng, X-D, Li, Y, Liu, C, Wu, W and Xiong, Y-Z (2015) 340 GHz on-chip 3-D antenna with 10 dBi gain and 80% radiation efficiency. IEEE Transactions on Terahertz Science and Technology, 5, 619627.CrossRefGoogle Scholar
Li, C-H and Chiu, T-Y (2019) Single flip-chip packaged dielectric resonator antenna for CMOS terahertz antenna array gain enhancement. IEEE Access, 7, 77377746.CrossRefGoogle Scholar
Li, C-H and Chiu, T-Y (2017) 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Transactions on Terahertz Science and Technology, 7, 284294.CrossRefGoogle Scholar
Ali, A, Yun, J, Ng, HJ, Kissinger, D, Giannini, F and Colantonio, P, Sub-THz on-chip dielectric resonator antenna with wideband performance, in 2019 49th European Microwave Conference (EuMC), IEEE, 2019, 912–915.CrossRefGoogle Scholar
Singh, H, Mandal, SK and Karmakar, A (2020) Application of substrate as ground for designing 3D on-chip dielectric resonator antenna with improved characteristics. AEU-International Journal of Electronics and Communications, 127, 153435.Google Scholar
Wu, J, Kodi, AK, Kaya, S, Louri, A and Xin, H (2017) Monopoles loaded with 3-D-printed dielectrics for future wireless intrachip communications. IEEE Transactions on Antennas and Propagation, 65, 6838–46.CrossRefGoogle Scholar
Guha, D, Banerjee, A, Kumar, C and Antar, YMM (2012) Higher order mode excitation for high-gain broadside radiation from cylindrical dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 60, 7177.CrossRefGoogle Scholar
Thakur, O, Dwari, S, Kanaujia, B and Pandey, G, Application of Magnetic Biasing to improve bandwidth in DRA coupled Patch antenna using PBG substrate. 3rd International Conference on Signal Processing and Integrated Networks (SPIN), 2016, 800–804.CrossRefGoogle Scholar
Zhu, H, Li, X, Feng, W, Xiao, J and Zhang, J (2017) 235 GHz on-chip antenna with miniaturised AMC loading in 65 nm CMOS. IET Microwaves, Antennas & Propagation, 12, 727733.CrossRefGoogle Scholar
Zhang, H and Shamim, A (2020) Gain enhancement of millimeter-wave on-chip antenna through an additively manufactured functional package. IEEE Transactions on Antennas and Propagation, 68, 43444353.CrossRefGoogle Scholar
Nafe, M, Syed, A and Shamim, A (2017) Gain-enhanced on-chip folded dipole antenna utilizing artificial magnetic conductor at 94 GHz. IEEE Antennas and Wireless Propagation Letters, 16, 28442847.CrossRefGoogle Scholar
Liu, Q, van den Biggelaar, AJ, Johannsen, U, van Beurden, MC and Smolders, AB (2019) On-chip metal tiling for improving grounded mm-wave antenna-on-chip performance in standard low-cost packaging. IEEE Transactions on Antennas and Propagation, 68, 26382645.CrossRefGoogle Scholar
Yang, J, Cui, D, Ding, Z and Lv, X, 220 GHz high gain on-chip antenna based on 180 nm CMOS. in 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), IEEE, 2018, 1–4.CrossRefGoogle Scholar
Kesavan, A, Mantash, M, Zaid, J and Denidni, TA (2018) A dual-plane beam-sweeping millimeter-wave antenna using reconfigurable frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 17, 18321836.CrossRefGoogle Scholar
Lan, H, Guo, J and Zhang, J, V-band polarization reconfigurable CMOS antenna-on-chip efficiency enhancement using AAMC, in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, 2018, 1–3.CrossRefGoogle Scholar
Lin, C-C, Chang, C-C and Hsieh, S-C, Design of 40-GHz CRLH-TL chip antenna using 0.35 μm CMOS-MEMS technology, in 2010 IEEE Radio and Wireless Symposium (RWS), IEEE, 2010, 555–558.CrossRefGoogle Scholar
Marnat, L, Ouda, MH, Arsalan, M, Salama, K and Shamim, A (2012) On-chip implantable antennas for wireless power and data transfer in a glaucoma-monitoring SoC. IEEE Antennas and Wireless Propagation Letters, 11, 16711674.CrossRefGoogle Scholar
Lee, S-W, Chen, Y, Titz, D, Ferrero, F, Luxey, C, Vaughan, RG and Parameswaran, M (2016) Fabrication, simulations, and measurements of self-assembled millimeter-wave antennas for system-on-chip applications. Microsystem Technologies, 22, 583592.CrossRefGoogle Scholar
Xiaoming, Z, Baisen, L and Xiaoguang, W, Compact RF-MEMS antenna with silicon substrate, in 2018 IEEE 2nd International Conference on Circuits, System and Simulation (ICCSS), IEEE, 2018, 101–104.CrossRefGoogle Scholar
Guo, L, Meng, H, Zhang, L and Ge, J, Design of MEMS on-chip helical antenna for THz application. in 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), IEEE, 2016, 1–4.CrossRefGoogle Scholar
Chu, H, Guo, Y-X, Lim, T-G, Khoo, YM and Shi, X (2012) 135-GHz micromachined on-chip antenna and antenna array. IEEE Transactions on Antennas and Propagation, 60, 45824588.CrossRefGoogle Scholar
Somjit, N and Oberhammer, J (2013) Three-dimensional micromachined silicon-substrate integrated millimetre-wave helical antennas. IET Microwaves, Antennas & Propagation, 7, 291298.CrossRefGoogle Scholar
Khan, WT, Ç. Ulusoy, A, Dufour, G, Kaynak, M, Tillack, B, Cressler, JD and Papapolymerou, J (2015) A D-band micromachined end-fire antenna in 130-nm SiGe BiCMOS technology. IEEE Transactions on Antennas and Propagation, 63, 24492459.CrossRefGoogle Scholar
Chang, L, Li, Y, Zhang, Z, Li, X, Wang, S and Feng, Z (2017) Low-sidelobe air-filled slot array fabricated using silicon micromachining technology for millimeter-wave application. IEEE Transactions on Antennas and Propagation, 65, 40674074.CrossRefGoogle Scholar
Bunea, A-C, Neculoiu, D, Avram, A and Iovea, M, Wideband micromachined antenna for W-band applications. in 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), IEEE, 2018, 433–434.CrossRefGoogle Scholar
Ahmad, W, Kucharski, M, Ng, H and Kissinger, D, A compact efficient D-band micromachined on-chip differential patch antenna for radar applications. in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, IEEE, 2019, 2201–2202.CrossRefGoogle Scholar
Li, Y, Liu, P and Zhang, Z, A novel modified silicon micromachining process with near-zero dielectric loss for high-efficiency antenna design up to terahertz band. in 2019 URSI International Symposium on Electromagnetic Theory (EMTS), IEEE, 2019, 1–4.CrossRefGoogle Scholar
Sallam, M, Serry, M, Sedky, S, Shamim, A, Vandenbosch, GAE and Soliman, EA, On-chip micromachined dielectric resonator antennas loaded with parasitic circular/crescent patch for mm-wave applications. in 2020 14th European Conference on Antennas and Propagation (EuCAP), IEEE, 2020, 1–5.CrossRefGoogle Scholar
Singh, H, Mandal, S, Mandal, SK and Karmakar, A (2019) Design of miniaturised meandered loop on-chip antenna with enhanced gain using shorted partially shield layer for communication at 9.45 GHz. IET Microwaves, Antennas & Propagation, 13, 10091016.CrossRefGoogle Scholar
Singh, H and Mandal, SK, Miniaturized on-chip meandered loop antenna with improved gain using partially shield layer. in 2020 14th European Conference on Antennas and Propagation (EuCAP), 2020, 1–4.CrossRefGoogle Scholar
Singh, H and Mandal, SK, Design of implantable on-chip antenna for bio-telemetry applications at ism 2.45 GHz. in 2017 International Symposium on Antennas and Propagation (ISAP), IEEE, 2017, 1–2.CrossRefGoogle Scholar
Singh, H and Mandal, SK (2020) A silicon-based ferrite loaded miniaturized on-chip antenna with enhanced gain for implantable bio-telemetry applications. Progress in Electromagnetics Research, 91, 6979.CrossRefGoogle Scholar
Singh, H, Mandai, S and Mandai, SK, Silicon-based ferrite loaded miniaturized on-chip antenna for biomedical applications with improved gain efficiency. in 2019 European Microwave Conference in Central Europe (EuMCE), 2019, 179–182.Google Scholar
Park, PH and Wong, SS, An on-chip dipole antenna for millimeter-wave transmitters. in 2008 IEEE Radio Frequency Integrated Circuits Symposium, IEEE, 2008, 629–632.CrossRefGoogle Scholar
Hirano, T, T Inoue, NLi, Yagi, H, Okada, K and Matsuzawa, A, Gain measurement of 60 GHz CMOS on-chip dipole antenna by proton irradiation. in 2017 International Symposium on Antennas and Propagation (ISAP), IEEE, 2013, 1–2.CrossRefGoogle Scholar
Singh, H, Hazarika, BR, Kumar, S and Mandal, SK, An asymmetrical slot circularly polarized on-chip antenna for wireless SoC applications at 2.45 GHz. in 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), IEEE, 2019, 1–4.CrossRefGoogle Scholar
Jou, AY-S, Azadegan, R and Mohammadi, S (2017) High-resistivity CMOS SOI rectenna for implantable applications. IEEE Microwave and Wireless Components Letters, 27, 854856.CrossRefGoogle Scholar
Lin, F and Ooi, BL, Integrated millimeter-wave on-chip antenna design employing artificial magnetic conductor. in 2009 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), IEEE, 2009, 174–177.CrossRefGoogle Scholar
Mustacchio, C, Boccia, L, Arnieri, E and Amendola, G (2021) A gain levelling technique for on-chip antennas based on split-ring resonators. IEEE Access, 9, 9075090756.CrossRefGoogle Scholar
Pan, S, Wang, D, Guclu, C and Capolino, F, High impedance layer for CMOS on-chip antenna at millimeter waves. in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 2011, 903–906.Google Scholar
Developement, Yole, Emerging semiconductor substrates: what will be the next game-changer? Yole Developement, 2019.Google Scholar
Sweeting, MN (2018) Modern small satellites-changing the economics of space. Proceedings of the IEEE, 106, 343361.CrossRefGoogle Scholar
Gao, S, Rahmat-Samii, Y, Hodges, RE and Yang, X-X (2018) Advanced antennas for small satellites. Proceedings of the IEEE, 106, 391403.CrossRefGoogle Scholar
Najati, N, Basari, , Rahardjo, ET and Zulkifli, FY, Monopole-like meander microstrip antenna onboard microsatellite for telecommand applications. in 2016 22nd Asia-Pacific Conference on Communications (APCC), 2016, 44–48.CrossRefGoogle Scholar
Pittella, E, Pisa, S and Nascetti, A, Reconfigurable S-band patch antenna radiation patterns for satellite missions. in 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2018, 651–656.CrossRefGoogle Scholar
Sri Sumantyo, JT and Imura, N, Development of circularly polarized synthetic aperture radar for aircraft and microsatellite. in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, 5654–5657.CrossRefGoogle Scholar
Phong, ND, Manh, LH, Khac, KN and Chien, DN, Circular polarization dual-feed array antenna for X-band satellite communication. in 2018 IEEE Seventh International Conference on Communications and Electronics (ICCE), 2018, 1–4.CrossRefGoogle Scholar
Malviya, L, Panigrahi, RK and Kartikeyan, MV (2017) MIMO antennas with diversity and mutual coupling reduction techniques: a review. International Journal of Microwave and Wireless Technologies, 9, 17631780.CrossRefGoogle Scholar
Sghaier, N and Latrach, L (2022) Design and analysis of wideband MIMO antenna arrays for 5G smartphone application. International Journal of Microwave and Wireless Technologies 14, 511523. doi: 10.1017/S1759078721000659.CrossRefGoogle Scholar
Ishteyaq, I and Muzaffar, K (2021) Multiple input multiple output (MIMO) and fifth generation (5G): an indispensable technology for sub-6 GHz and millimeter wave future generation mobile terminal applications. International Journal of Microwave and Wireless Technologies, 117. doi:10.1017/S1759078721001100.Google Scholar
Jing, L, Rowell, CR, Raju, S, Chan, M, Murch, RD and Yue, CP, Fabrication and measurement of millimeter-wave on-chip MIMO antenna for CMOS RFIC's. in 2016 IEEE MTT-S International Wireless Symposium (IWS), IEEE, 2016, 1–4.CrossRefGoogle Scholar
Ng, HJ and Kissinger, D (2018) Highly miniaturized 120-GHz SIMO and MIMO radar sensor with on-chip folded dipole antennas for range and angular measurements. IEEE Transactions on Microwave Theory and Techniques, 66, 25922603.CrossRefGoogle Scholar
Gao, X, Du, J, Zhang, T and Guo, YJ (2018) High-Tc superconducting fourth-harmonic mixer using a dual-band terahertz on-chip antenna of high coupling efficiency. IEEE Transactions on Terahertz Science and Technology, 9, 5562.CrossRefGoogle Scholar
Saxena, S, Manur, DS, Mansoor, N and Ganguly, A (2020) Scalable and energy efficient wireless inter chip interconnection fabrics using THz-band antennas. Journal of Parallel and Distributed Computing, 139, 148160.CrossRefGoogle Scholar
Majerus, SJ, Garverick, SL, Suster, MA, Fletter, PC and Damaser, MS (2012) Wireless, ultra-low-power implantable sensor for chronic bladder pressure monitoring. ACM Journal on Emerging Technologies in Computing Systems, 8, 11.CrossRefGoogle ScholarPubMed
Cheng, A and Tereshchenko, LG (2011) Evolutionary innovations in cardiac pacing. Journal of Electrocardiology, 44, 611615.CrossRefGoogle ScholarPubMed
Bolz, A (2011) Cardiac Pacemaker Systems. Springer Berlin Heidelberg, Berlin, Heidelberg). 767783.Google Scholar
Boveda, S, Garrigue, S and Ritter, P (2013) The History of Cardiac Pacemakers and Defibrillators. Springer Milan, Milano). 253264.Google Scholar
Winfree, KN, Pretzer-Aboff, I, Hilgart, D, Aggarwal, R, Behari, M and Agrawal, SK (2013) The effect of step-synchronized vibration on patients with Parkinson's disease: case studies on subjects with freezing of gait or an implanted deep brain stimulator. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21, 806811.CrossRefGoogle ScholarPubMed
Kiourti, A and Nikita, KS (2012) A review of implantable patch antennas for biomedical telemetry: challenges and solutions [wireless corner]. IEEE Antennas and Propagation Magazine, 54, 210228.CrossRefGoogle Scholar
M. Huang, S, -R. Tofighi, M and Rosen, A, Considerations for the Design and Placement of Implantable Annular Slot Antennas for Intracranial Pressure Monitoring Devices, in IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1514–1517, 2015, doi: 10.1109/LAWP.2014.2370940.CrossRefGoogle Scholar
Masius, AA and Wong, YC (2020) On-chip miniaturized antenna in CMOS technology for biomedical implant. AEU-International Journal of Electronics and Communications, 115, 153025.Google Scholar
Karacolak, T, Hood, AZ and Topsakal, E (2008) Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 56, 10011008.CrossRefGoogle Scholar