Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T02:12:05.808Z Has data issue: false hasContentIssue false

Negative index from asymmetric metallic cut wire pairs metamaterials

Published online by Cambridge University Press:  19 January 2010

Shah Nawaz Burokur*
Affiliation:
IEF, Univ. Paris-Sud, CNRS, UMR 8622, 91405 Orsay Cedex, France.
André de Lustrac
Affiliation:
IEF, Univ. Paris-Sud, CNRS, UMR 8622, 91405 Orsay Cedex, France.
*
Corresponding author: S.N. Burokar Email: sburokur@u-paris10.fr

Abstract

Metamaterials made of exclusively metallic cut wire pairs have been experimentally demonstrated to exhibit a negative refractive index at optical frequencies. However, other related works on slightly different wire and plate pairs have not shown a negative index. In this paper, we present the analogy between previously reported S-shaped metamaterials and asymmetric cut wire pairs by a simple unifying approach. These two structures present a negative index for some geometrical configurations. Using simulations and experimental measurements in the microwave domain, we investigate the material properties of the last structure. Applying the inversion method from transmission and reflection responses, we show that a negative index is exhibited due to simultaneous negative permittivity ε and permeability μ. A negative index n is experimentally verified in a bulk prism engineered by stacking several layers of the metamaterial.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Usp., 10 (1968), 509514.CrossRefGoogle Scholar
[2]Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47 (1999), 20752084.CrossRefGoogle Scholar
[3]Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 76 (1996), 47734776.CrossRefGoogle ScholarPubMed
[4]Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 84 (2000), 41844187.CrossRefGoogle ScholarPubMed
[5]Shelby, R.A.; Smith, D.R.; Schultz, S.: Experimental verification of a negative index of refraction. Science, 292 (2001), 7779.CrossRefGoogle ScholarPubMed
[6]Yen, T.J. et al. : Terahertz magnetic response from artificial materials. Science, 303 (2004), 14941496.CrossRefGoogle ScholarPubMed
[7]Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science, 305 (2004), 788792.CrossRefGoogle ScholarPubMed
[8]Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J.; Koschny, T.; Soukoulis, C.M.: Magnetic response of metamaterials at 100 Terahertz. Science, 306 (2004), 13511353.CrossRefGoogle ScholarPubMed
[9]Zhang, S.; Fan, W.; Minhas, B.K.; Frauenglass, A.; Malloy, K.J.; Brueck, S.R.J.: Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett., 94 (37402) (2005).CrossRefGoogle ScholarPubMed
[10]Leonhardt, U.: Optical conformal mapping. Science, 312 (2006), 17771780.CrossRefGoogle ScholarPubMed
[11]Pendry, J.B.; Schurig, D.; Smith, D.R.: Controlling electromagnetic fields. Science, 312 (2006), 17801782.CrossRefGoogle ScholarPubMed
[12]Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science, 314 (2006), 977980.CrossRefGoogle ScholarPubMed
[13]Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M.: Optical cloaking with metamaterials. Nat. Photonics, 1 (2007), 224227.CrossRefGoogle Scholar
[14]Kanté, B.; de Lustrac, A.; Lourtioz, J.-M.; Burokur, S.: Infrared cloaking based on the electric response of split ring resonators. Opt. Express, 16 (2008), 91919198.CrossRefGoogle ScholarPubMed
[15]Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett., 85 (2000), 39663969.CrossRefGoogle ScholarPubMed
[16]Burokur, S.N.; Latrach, M.; Toutain, S.: Theoretical investigation of a circular patch antenna in the presence of a left-handed medium. IEEE Antennas Wirel. Propag., 4 (2005), 183186.CrossRefGoogle Scholar
[17]Ziolkowski, R.W.: Metamaterial-based antennas: research and developments. IEICE Trans. Elec., E89-C (2006), 12671275.CrossRefGoogle Scholar
[18]Tichit, P.-H.; Burokur, S.N.; de Lustrac, A.: Ultradirective antenna via transformation optics. J. Appl. Phys., 105 (104912) (2009), 6.CrossRefGoogle Scholar
[19]Zhou, J.; Koschny, T.; Kafesaki, M.; Economou, E.N.; Pendry, J.B.; Soukoulis, C.M.: Saturation of magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett., 95 (223902) (2005).CrossRefGoogle ScholarPubMed
[20]Podolskiy, A.; Sarychev, A.K.; Shalaev, V.M.: Plasmon modes and negative refraction in metal nanowire composites. Opt. Express, 11 (2003), 735745.CrossRefGoogle ScholarPubMed
[21]Shalaev, V.M. et al. : Negative index of refraction in optical metamaterials. Opt. Lett., 30 (2005), 33563358.CrossRefGoogle ScholarPubMed
[22]Shalaev, V.M.: Optical negative-index metamaterials. Nat. Photonics, 1 (2007), 4148.CrossRefGoogle Scholar
[23]Dolling, G.; Enkrich, C.; Wegener, M.; Zhou, J.F.; Soukoulis, C.M.; Linden, S.: Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett., 30 (2005), 31983200.CrossRefGoogle ScholarPubMed
[24]Zhou, J.; Zhang, L.; Tuttle, G.; Koschny, T.; Soukoulis, C.M.: Negative index materials using simple short wire pairs. Phys. Rev. B, 73 (041101(R)) (2006).CrossRefGoogle Scholar
[25]Zhou, J.; Economou, E.; Koschny, T.; Soukoulis, C.M.: Unifying approach to left-handed material design. Opt. Lett., 31 (2006), 36203622.CrossRefGoogle ScholarPubMed
[26]Sellier, A.; Burokur, S.N.; Kanté, B.; de Lustrac, A.: Negative refractive index metamaterials using only metallic cut wires. Opt. Express, 17 (2009), 63016310.CrossRefGoogle ScholarPubMed
[27]Chen, H. et al. : Left-handed materials composed of only S-shaped resonators. Phys. Rev. E, 70 (057605) (2004).CrossRefGoogle ScholarPubMed
[28]Kafesaki, M.; Tsiapa, I.; Katsarakis, N.; Koschny, T.; Soukoulis, C.M.; Economou, E.N.: Left-handed metamaterials: the fishnet structure and its variations. Phys. Rev. B, 75 (235114) (2007).CrossRefGoogle Scholar
[29]High Frequency Structure Simulator v11. Ansoft, Pittsburg, PA, USA.Google Scholar
[30]Nicolson, A.M.; and Ross, G.F.: Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas., 19 (1970), 377382.CrossRefGoogle Scholar
[31]Smith, D.R.; Schultz, S.; Markos, P.; Soukoulis, C.M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B, 65 (195104) (2002).CrossRefGoogle Scholar
[32]Valentine, J. et al. : Three-dimensional optical metamaterial with a negative refractive index. Nature, 455 (2008), 376379.CrossRefGoogle ScholarPubMed
[33]Burokur, S.N.; Sellier, A.; Kanté, B.; de Lustrac, A.: Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index. Appl. Phys. Lett., 94 (201111) (2009).CrossRefGoogle Scholar