Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-06T20:12:01.108Z Has data issue: false hasContentIssue false

Performance analysis of double-face logarithmic spiral metamaterial superstrate for full enhancement of circularly polarized 5G spiral patch antenna investigated using characteristic mode analysis

Published online by Cambridge University Press:  07 February 2022

Ahmed Abdelaziz*
Affiliation:
Department of Electronics and Communications, Luxor Higher Institute of Engineering & Technology, Luxor 85834, Egypt
Hesham A. Mohamed
Affiliation:
Department of Microstrip Circuits, Electronics Research Institute, Dokky, Giza 11843, Egypt
Ehab K. I. Hamad
Affiliation:
Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
*
Author for correspondence: Ahmed Abdelaziz, E-mail: d20190014@aswu.edu.eg

Abstract

In this article, a novel double-face logarithmic spiral metamaterial (LSMTM) superstrate-inspired multiple-input multiple-output (MIMO) for fully enhanced circularly polarized (CP) antenna system is examined for 5G wireless communications. This novel double-face LSMTM superstrate acts as a planar concave-concave lens. Initially, the antenna is designed with a circular spiral patch to generate CP radiation in the frequency band of interest. Then, at a height of 6.5 mm (0.606 λo) above the MIMO antenna, which has a 0.8 mm (0.075 λo) edge-to-edge separation, the LSMTM superstrate is employed for isolation, gain, and bandwidth improvement. The proposed superstrate enhances the isolation, gain, and bandwidth of the antenna by about 32 dB, 3.47 dB, and 900 MHz, respectively. In contrast to the conventional technique of verifying operation with a simulated surface current distribution, characteristic mode analysis (CMA) is used to provide a better explanation of the proposed antenna's different modes and the creation of circular polarization. Additionally, the CMA supports the development of an effective technique that can predict whether or not the isolation can be further improved. The simulated results align with the measured results and are well adapted for 5G wireless communication devices.

Type
Antenna Design, Modelling and Measurements
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ghosh, A, Maeder, A, Baker, M and Chandramouli, D (2019) 5G Evolution: a view on 5G cellular technology beyond 3GPP release 15. IEEE Access 7, 127639–51.CrossRefGoogle Scholar
Abdel-Fatah, SY, Hamad, EKI, Swelam, W, Allam, AMMA and Mohamed, HA (2021) Design of compact 4-port MIMO antenna based on Minkowski fractal shape DGS for 5G applications. PIER C 113, 123136.CrossRefGoogle Scholar
Vannithamby, R and Talwar, S (2017) Towards 5G: Applications, Requirements and Candidate Technologies. John Wiley & Sons, Ltd, USA.Google Scholar
Banerjee, U, Karmakar, A and Saha, A (2020) A review on circularly polarized antennas, trends and advances. International Journal of Microwave and Wireless Technologies 12, 922943.CrossRefGoogle Scholar
Hussain, N, Jeong, M, Abbas, A, Kim, T-J and Kim, N (2020) A metasurface-based low-profile wideband circularly polarized patch antenna for 5G millimeter-wave systems. IEEE Access 8, 2212722135.CrossRefGoogle Scholar
Moubadir, M, Badaoui, I, Touhami, NA, Aghoutane, M and El Ouahabi, M (2019) A new circular polarization dual feed microstrip square patch antenna using branch coupler feeds for WLAN/HIPERLAN applications. Procedia Manufacturing 32, 702709.CrossRefGoogle Scholar
Caso, R, Buffi, A, Pino, MR, Nepa, P and Manara, G (2010) A novel dual-feed slot-coupling feeding technique for circularly polarized patch arrays. IEEE Antennas and Wireless Propagation Letters 9, 183186.CrossRefGoogle Scholar
Lam, KY, Luk, K-M, Lee, KF, Wong, H and Ng, KB (2011) Small circularly polarized U-slot wideband patch antenna. IEEE Antennas and Wireless Propagation Letters 10, 8790.CrossRefGoogle Scholar
Qing, X and Chen, ZN (2010) Compact asymmetric-slit microstrip antennas for circular polarization. IEEE Transactions on Antennas and Propagation 59, 285288.Google Scholar
Ou, Y, Cai, X and Qian, K (2017) Two-element compact antennas decoupled with a simple neutralization line. Progress In Electromagnetics Research 65, 6368.CrossRefGoogle Scholar
Cheng, Y-F, Ding, X, Shao, W and Wang, B-Z (2016) Reduction of mutual coupling between patch antennas using a polarization-conversion isolator. IEEE Antennas and Wireless Propagation Letters 16, 12571260.CrossRefGoogle Scholar
Ahmed, OF, Ghoname, RS and Zekry, AA (2013) Mutual coupling reduction of MIMO antennas using parasitic elements for wireless communications. International Journal of Computer Applications 62, 3942.CrossRefGoogle Scholar
Li, Z, Du, Z, Takahashi, M, Saito, K and Ito, K (2011) Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Transactions on Antennas and Propagation 60, 473481.CrossRefGoogle Scholar
Abdelaziz, A and Hamad, EKI (2020) Isolation enhancement of 5G multiple-input multiple-output microstrip patch antenna using metamaterials and the theory of characteristic modes. International Journal of RF and Microwave Computer-Aided Engineering 30, e22416.CrossRefGoogle Scholar
Khajeh-Khalili, F, Honarvar, MA, Naser-Moghadasi, M and Dolatshahi, M (2020) Gain enhancement and mutual coupling reduction of multiple-input multiple-output antenna for millimeter-wave applications using two types of novel metamaterial structures. International Journal of RF and Microwave Computer-Aided Engineering 30, e22006.CrossRefGoogle Scholar
Harrington, R and Mautz, J (1971) Theory of characteristic modes for conducting bodies. IEEE Transactions on Antennas and Propagation 19, 622628.CrossRefGoogle Scholar
Cabedo-Fabres, M, Antonino-Daviu, E, Valero-Nogueira, A and Bataller, MF (2007) The theory of characteristic modes revisited: a contribution to the design of antennas for modern applications. IEEE Antennas and Propagation Magazine 49, 5268.CrossRefGoogle Scholar
Garbacz, R and Turpin, R (1971) A generalized expansion for radiated and scattered fields. IEEE Transactions on Antennas and Propagation 19, 348358.CrossRefGoogle Scholar
Huang, S, Pan, J and Luo, Y (2018) Study on the relationships between eigenmodes, natural modes, and characteristic modes of perfectly electric conducting bodies. International Journal of Antennas and Propagation 2018, Article ID 8735635, 13 pages.CrossRefGoogle Scholar
Khan, M and Chatterjee, D (2016) Characteristic mode analysis of a class of empirical design techniques for probe-fed, U-slot microstrip patch antennas. IEEE Transactions on Antennas and Propagation 64, 27582770.CrossRefGoogle Scholar
Lin, J-F and Chu, Q-X (2018) Increasing bandwidth of slot antennas with combined characteristic modes. IEEE Transactions on Antennas and Propagation 66, 31483153.CrossRefGoogle Scholar
Saraswat, K and Harish, AR (2018) Analysis of wideband circularly polarized ring slot antenna using characteristics mode for bandwidth enhancement. International Journal of RF and Microwave Computer-Aided Engineering 28, 18.CrossRefGoogle Scholar
Harrington, R and Mautz, J (1971) Computation of characteristic modes for conducting bodies. IEEE Transactions on Antennas and Propagation 19, 629639.CrossRefGoogle Scholar
Balanis, CA (2016) Antenna Theory: Analysis and Design. 4th ED, John Wiley & Sons, Inc., New Jersey.Google Scholar
Szabó, Z, Park, G-H, Hedge, R and Li, E-P (2010) A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Transactions on Microwave Theory and Techniques 58, 26462653.CrossRefGoogle Scholar
Hamad, EKI and Abdelaziz, A (2019) Metamaterial superstrate microstrip patch antenna for 5G wireless communication based on the theory of characteristic modes. Journal of Electrical Engineering 70, 187197.CrossRefGoogle Scholar
Feresidis, AP and Vardaxoglou, JC (2001) High gain planar antenna using optimised partially reflective surfaces. IEE Proceedings-Microwaves, Antennas and Propagation 148, 345350.CrossRefGoogle Scholar
Yang, X, Liu, Y and Gong, S-X (2018) Design of a wideband omnidirectional antenna with characteristic mode analysis. IEEE Antennas and Wireless Propagation Letters 17, 993997.CrossRefGoogle Scholar
Shoaib, N, Shoaib, S, Khattak, RY, Shoaib, I, Chen, X and Perwaiz, A (2018) MIMO antennas for smart 5G devices. IEEE Access 6, 7701477021.CrossRefGoogle Scholar
Rahman, S, Ren, X-C, Altaf, A, Irfan, M, Abdullah, M, Muhammad, F, Anjum, MR and Mursal, SNF (2020) Nature inspired MIMO antenna system for future mmWave technologies. Micromachines 11, 111.CrossRefGoogle ScholarPubMed
Kamal, MM, Yang, S, Ren, X-C, Altaf, A, Kiani, SH, Anjum, MR, Iqbal, A, Asif, M and Saeed, SI (2021) Infinity shell shaped MIMO antenna array for mm-wave 5G applications. Electronics 10, 112.CrossRefGoogle Scholar
Ali, W, Das, S, Medkour, H and Lakrit, S (2021) Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications. Microsystem Technologies 27, 283292.CrossRefGoogle Scholar
Murthy, NS (2020) Improved isolation metamaterial inspired mm-wave MIMO dielectric resonator antenna for 5G application. Progress in Electromagnetics Research 100, 247261.CrossRefGoogle Scholar
Gupta, S, Briqech, Z, Sebak, AR and Denidni, TA (2017) Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications. IEEE Antennas and Wireless Propagation Letters 16, 27632766.CrossRefGoogle Scholar
Jilani, SF and Alomainy, A (2018) Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves, Antennas & Propagation 12, 672677.CrossRefGoogle Scholar
Dey, S, Kiran, NS and Dey, S (2020) SIW Butler Matrix Driven Beam Scanning Array For Millimeter Wave 5G Communication. 2020 IEEE Asia-Pacific Microwave Conference (APMC), pp. 709711.CrossRefGoogle Scholar
Raheel, K, Altaf, A, Waheed, A, Kiani, SH, Sehrai, DA, Tubbal, F and Raad, R (2021) E-shaped H-slotted dual band mmWave antenna for 5G technology. Electronics 10, 110.CrossRefGoogle Scholar
Akbari, M, Ghalyon, HA, Farahani, M, Sebak, A-R and Denidni, TA (2017) Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems. IEEE Access 5, 65276537.CrossRefGoogle Scholar
Park, S-J and Park, S-O (2016) LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters 16, 601604.CrossRefGoogle Scholar