Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T10:25:32.010Z Has data issue: false hasContentIssue false

Reconfigurable MIMO antenna: previous advancements and the potential for future wireless communication

Published online by Cambridge University Press:  11 December 2023

Puja Kumari*
Affiliation:
Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
Santanu Dwari
Affiliation:
Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
*
Corresponding author: Puja Kumari; Email: puja.kumari1290@gmail.com

Abstract

Future smart reconfigurable antennas (RAs) (Haupt R-L and Lanagan M (2013) Reconfigurable antennas. IEEE Antennas and Propagation Magazine 55, 49–61) will likely be fully multipurpose and controlled by software and equipped with machine learning skills that can discern and respond to alterations in the radio frequency environment. Cognitive radio utilizations will be accomplished using a new generation of antenna technology and communication protocols. The effective use of frequencies and the use of polarization diversity and radiation pattern reconfigurability to send data over existing congested frequencies will be major advantages for such applications. The usage of antennas that can be reconfigured in multiple-input multiple-output (MIMO) channels will enhance channel capacity while simultaneously improving channel efficiency and lowering costs (Christodoulou C-G, Tawk Y, Lane S-A and Erwin S-R (2012) Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE 100, 2250–2261). There are a lot of antennas used both at the transmitter and at the receiver front end in a MIMO system. The benefit of employing such arrangements is that different types of information can be conveyed at a similar time, boosting the spectral efficiency of communication in a multipath situation. The coding rate, modulation level, and transmission signaling method of a MIMO system can all be changed in response to changing channel circumstances and user needs. In a MIMO context, polarization reconfigurable/frequency-reconfigurable/radiation pattern RA increase the degree of freedom and enhancing the system’s performance. The usage of such antennas greatly enhances capacity by enabling a choice of various polarization configurations and pattern diversity. Antenna arrays that can be reconfigured are also an appealing MIMO system solution that needs to retain robust communication channels, particularly in portable gadgets where the area is limited.

Type
Review Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rappaport, T-S, Murdock, J-N and Gutierrez, F (2011) State of the art in 60 GHz integrated circuits & systems for wireless communications. Proceedings of the IEEE 99, 13901436.CrossRefGoogle Scholar
Pi, Z and Khan, F (2011) An introduction to millimeter-wave mobile broadband systems. IEEE Communication Magazine 49, 101107.CrossRefGoogle Scholar
(2011) Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations (Release 10), Standard 3GPP TR 25.996. March.Google Scholar
(2008) Guidelines for Evaluation of Radio Interference Technologies for IMT-Advanced, Standard ITU-R M.2135.Google Scholar
Xichun, L, Gani, A, Salleh, R and Zakaria, O (2009) The future of mobile wireless communication networks. In Proceedings International Conference on Communication Software and Networks, 554557.Google Scholar
Molisch, A-F, Steinbauer, M, Toeltsch, M, Bonek, E and Thoma, R (2002) Capacity of MIMO systems based on measured wireless channels. IEEE Journal on Selected Areas in Communications 20, 561569.CrossRefGoogle Scholar
Fuhl, J, Molisch, A-F and Bonek, E (1998) A unified channel model for mobile radio systems with smart antennas. IEE Proceedings - Radar, Sonar and Navigation 145, 3241.CrossRefGoogle Scholar
Rajagopal, S, Abu-Surra, S, Pi, Z and Khan, F (2011) Antenna array design for multi-Gbps mm-wave mobile broadband communication. In Proceedings of IEEE Global Telecommunications Conference, 16.Google Scholar
Cetiner, B-A, Jafarkhani, H, Qian, J-Y, Yoo, H-J, Grau, A and Flaviis, F-D (2004) Multifunctional reconfigurable MEMS integrated antennas for adaptive MIMO systems. IEEE Communications Magazine 42, 6270.CrossRefGoogle Scholar
Grau, A, Jafarkhani, H and Flaviis, F-D (2008) A reconfigurable multiple-input multiple-output communication system. IEEE Transactions on Wireless Communications 7, 17191733.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2022) 5G MIMO antenna designs for base station and user equipment: Some recent developments and trends. IEEE Antennas and Propagation Magazine 64, 95107.CrossRefGoogle Scholar
Thompson, J, Ge, X, Wu, HC, Irmer, R, Jiang, H, Fettweis, G and Alamouti, S (2014) 5G wireless communication systems: Prospects and challenges [Guest Editorial]. IEEE Communications Magazine 52, 6264.CrossRefGoogle Scholar
Thompson, J, Ge, X, Wu, HC, Irmer, R, Jiang, H, Fettweis, G and Alamouti, S (2014) 5G wireless communication systems: Prospects and challenges part 2 [Guest Editorial]. IEEE Communications Magazine 52, 2426.CrossRefGoogle Scholar
(2015) IMT vision–framework and overall objectives of the future development of IMT for 2020 and beyond. Geneva: International Telecommunication Union, Recommendation ITU-R M.2083-0. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdfGoogle Scholar
Wei, L, Hu, R-Q, Qian, Y and Wu, G (2014) Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications 21, 136143.Google Scholar
Zhao, L-Y, Liu, F, Shen, X, Jing, G, Cai, YM and Li, Y (2018) A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands. IEEE Access 6, 3809738105.CrossRefGoogle Scholar
Guo, J, Liu, F, Zhao, L, Yin, Y-Z, Huang, G-L and Li, Y (2019) Meta-surface antenna array decoupling designs for two linear polarized antennas coupled in H-Plane and E-Plane. In IEEE Access, 1-1.CrossRefGoogle Scholar
Liu, F, Guo, J, Zhao, L, Huang, G-L, Li, Y and Yin, Y (2019) Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Transactions on Antennas and Propagation 68, 552557.CrossRefGoogle Scholar
Tang, J, Faraz, F, Chen, X, Zhang, Q, Li, Q, Li, Y and Zhang, S (2020) A metasurface superstrate for mutual coupling reduction of large antenna arrays. IEEE Access 8, 126859126867.CrossRefGoogle Scholar
Liu, F, Guo, J, Zhao, L, Huang, G-L, Yingsong, L and Yin, Y-Z (2020) Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression. IEEE Transactions on Antennas and Propagation 69(3), 17511756.CrossRefGoogle Scholar
Haider, N, Caratelli, D and Yarovoy, A-G (2013) Recent developments in reconfigurable and multiband antenna technology. International Journal of Antennas and Propagation 2013, .CrossRefGoogle Scholar
Anagnostou, D-E, Chryssomallis, M-T and Goudos, S (2021) Reconfigurable antennas. Electronics 10, .CrossRefGoogle Scholar
Parchin, N-O, Basherlou, H-J, Al-Yasir, Y-I-A, Abd-Alhameed, R-A, Abdulkhaleq, A-M and Noras, J-M (2019) Recent developments of reconfigurable antennas for current and future wireless communication systems. Electronics 8, .Google Scholar
Parchin, N-O, Basherlou, H-J, Al-Yasir, Y-I-A, Abdulkhaleq, A-M and Abd-Alhameed, R-A (2020) Reconfigurable antennas: Switching techniques—A survey. Electronics 9, .Google Scholar
Schaubert, D-H, Farrar, F-G, Hayes, S-T and Sindoris, A-R (1983) Frequency-agile polarization diversity microstrip antennas and frequency scanned arrays. U.S. Patent 4367474A, January.Google Scholar
Smith, J-K (1999) Reconfigurable aperture antenna (RECAP), DARPA. www.darpa.mil.Google Scholar
Christodoulou, C-G, Tawk, Y, Lane, S-A and Erwin, S-R (2012) Reconfigurable antennas for wireless and space applications. Proceedings of the IEEE 100, 22502261.CrossRefGoogle Scholar
Rutschlin, M and Sokol, V (2013) Reconfigurable antenna simulation: Design of reconfigurable antennas with electromagnetic simulation. IEEE Microwave Magazine 14, .CrossRefGoogle Scholar
Migliore, M-D, Pinchera, D and Schettino, F (2006) Improving channel capacity using adaptive MIMO antennas. IEEE Transactions on Antennas and Propagation 54, 34813489.CrossRefGoogle Scholar
Sayeed, A-M and Vasanthan, R (2007) Maximizing MIMO capacity in sparse multipath with reconfigurable antenna arrays. In IEEE Journal of Selected Topics in Signal Processing, 156166.CrossRefGoogle Scholar
Boerman, J-D and Jennifer, T-B (2008) Performance study of pattern reconfigurable antennas in MIMO communication systems. IEEE Transactions on Antennas and Propagation 56, 231236.CrossRefGoogle Scholar
Pinchera, D, Wallace, JW, Migliore, MD and Jensen, MA (2008) Experimental analysis of a wideband adaptive-MIMO antenna. IEEE Transactions on Antennas and Propagation 56, 908913.CrossRefGoogle Scholar
Matthaiou, M, Sayeed, AM and Nossek, JA (2010) Maximizing LoS MIMO capacity using reconfigurable antenna arrays. In International ITG Workshop on Smart Antennas (WSA). IEEE.CrossRefGoogle Scholar
Lim, J, Back, G, Ko, Y, Song, C and Yun, T (2010) A reconfigurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN. IEEE Transactions on Antennas and Propagation 58, 24042411.Google Scholar
Hu, Z-H, Hall, P-S, Gardner, P and Nechayev, Y (2011) Wide tunable balanced antenna for mobile terminals and its potential for MIMO applications. In Loughborough Antennas & Propagation Conference, 14.CrossRefGoogle Scholar
Hu, Z-H, Hall, P-S and Gardner, P (2011) Reconfigurable dipole-chassis antennas for small terminal MIMO applications. Electronics Letters 47, 953955.CrossRefGoogle Scholar
Jin, Z-J, Lim, J-H and Yun, T-Y (2012) Frequency reconfigurable multiple-input multiple-output antenna with high isolation. IET Microwaves, Antennas & Propagation 6, 10951101.CrossRefGoogle Scholar
Kulkarni, A-N and Sharma, S-K (2013) Frequency reconfigurable microstrip loop antenna covering LTE bands with MIMO implementation and wideband microstrip slot antenna all for portable wireless DTV media player. IEEE Transactions on Antennas and Propagation 61, 964968.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2014) A cognitive radio reconfigurable MIMO and sensing antenna system. IEEE Antennas and Wireless Propagation Letters 14, 257260.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2015) Integrated reconfigurable multiple-input–multiple -output antenna system with an ultra-wide band sensing antenna for cognitive radio platforms. IET Microwaves, Antennas & Propagation 9, 940947.CrossRefGoogle Scholar
Tawk, Y, Costantine, J and Christodoulou, C-G (2014) Reconfigurable filtennas and MIMO in cognitive radio applications. IEEE Transactions on Antennas and Propagation 62, 10741083.CrossRefGoogle Scholar
Cheng, S-P and Lin, K-H (2015) A reconfigurable monopole MIMO antenna with wideband sensing capability for cognitive radio using varactor diodes. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 22332234.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2016) Planar meandered-f-shaped 4-element reconfigurable multiple-input-multiple-output antenna system with isolation enhancement for cognitive radio platforms. IET Microwaves, Antennas & Propagation 10, 4552.CrossRefGoogle Scholar
Cao, Y, Cheung, S-W and Yuk, T-I (2016) Frequency-reconfigurable multiple-input-multiple-output monopole antenna with wide-continuous tuning range. IET Microwaves, Antennas & Propagation 10, 13221331.CrossRefGoogle Scholar
Soltani, S, Lotfi, P and Murch, R-D (2016) A port and frequency reconfigurable MIMO slot antenna for WLAN applications. IEEE Transactions on Antennas and Propagation 64, 12091217.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2016) Wide‐band frequency agile MIMO antenna system with wide tunability range. Microwave and Optical Technology Letters 58, 22762280.CrossRefGoogle Scholar
Raza, A, Khan, M-U, Hussain, R, Tahir, F-A and Sharawi, M-S (2016) A 2-element reconfigurable MIMO antenna consisting of miniaturized patch elements. In IEEE International Symposium on Antennas and Propagation (APSURSI), 655656.CrossRefGoogle Scholar
Nachouane, H, Najid, A, Tribak, A and Riouch, F (2016) Dual port antenna combining sensing and communication tasks for cognitive radio. International Journal of Electronics and Telecommunications 62, 121127.CrossRefGoogle Scholar
Hussain, R, Ghalib, A and Sharawi, M-S (2017) Annular slot-based miniaturized frequency-agile MIMO antenna system. IEEE Antennas and Wireless Propagation Letters 16, 24892492.CrossRefGoogle Scholar
Hussain, R, Khan, M-U and Sharawi, M-S (2018) An integrated dual MIMO antenna system with dual-function GND-plane frequency-agile antenna. IEEE Antennas and Wireless Propagation Letters 17, 142145.CrossRefGoogle Scholar
Xu, Z-Q, Sun, Y-T, Zhou, -Q-Q, Ban, Y-L, Li, Y-X and Ang, -S-S (2017) Reconfigurable MIMO antenna for integrated-metal-rimmed smartphone applications. IEEE Access 5, 2122321228.CrossRefGoogle Scholar
Zhang, Y-H, Yang, S-R, Ban, Y-L, Qiang, Y-F, Guo, J and Z-f, Y (2018) Four‐feed reconfigurable MIMO antenna for metal‐frame smartphone applications. IET Microwaves, Antennas & Propagation 12, 14771482.CrossRefGoogle Scholar
Raza, A, Khan, M-U, Tahir, F-A, Hussain, R and Sharawi, M-S (2018) A 2-element meandered-line slot-based frequency reconfigurable MIMO antenna system. Microwave and Optical Technology Letters 60, 27942801.CrossRefGoogle Scholar
Pandit, S, Mohan, A and Ray, P (2018) Compact frequency-reconfigurable MIMO antenna for microwave sensing applications in WLAN and WiMAX frequency bands. IEEE Sensors Letters 2, .CrossRefGoogle Scholar
Hussain, R, Sharawi, M-S and Shamim, A (2018) 4-element concentric pentagonal slot-line-based ultra-wide tuning frequency reconfigurable MIMO antenna system. IEEE Transactions on Antennas and Propagation 66, 42824287.CrossRefGoogle Scholar
Zhao, X and Riaz, S (2018) A dual-band frequency reconfigurable MIMO patch-slot antenna based on reconfigurable microstrip feedline. IEEE Access 6, 4145041457.CrossRefGoogle Scholar
Zhao, X, Riaz, S and Geng, S (2019) A reconfigurable MIMO/UWB MIMO antenna for cognitive radio applications. IEEE Access 7, 4673946747.CrossRefGoogle Scholar
Hussain, R, Khan, M-U, Almajali, E and Sharawi, M-S (2019) Split-ring-resonator-loaded multiband frequency agile slot-based MIMO antenna system. IET Microwaves, Antennas & Propagation 13, 24492456.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2019) An integrated slot-based frequency-agile and UWB multifunction MIMO antenna system. IEEE Antennas and Wireless Propagation Letters 18, 21502154.CrossRefGoogle Scholar
Hussain, R, Khan, M-U and Sharawi, M-S (2020) Design and analysis of a miniaturized meandered slot-line-based quad-band frequency agile MIMO antenna. IEEE Transactions on Antennas and Propagation 68, 24102415.CrossRefGoogle Scholar
Hussain, R and Sharawi, M-S (2020) Wide tuning range, frequency agile MIMO antenna for cognitive radio front ends. U.S. Patent No. 10,547,107.Google Scholar
Hussain, R (2021) Dual-band-independent tunable multiple-input–multiple-output antenna for 4G/5G new radio access network applications. IET Microwaves, Antennas & Propagation 15, 300308.CrossRefGoogle Scholar
Jehangir, -S-S, Hussain, R, Hussein, M-I and Sharawi, M-S (2020) Frequency reconfigurable Yagi-like MIMO antenna system with a wideband reflector. IET Microwaves, Antennas & Propagation 14, 586592.CrossRefGoogle Scholar
Hussain, R, Jehangir, -S-S, Khan, M-U and Sharawi, M-S (2020) Stacked frequency reconfigurable Yagi-like MIMO antenna system. IET Microwaves, Antennas & Propagation 14, 532538.CrossRefGoogle Scholar
Hussain, R, Khan, M-U, Iqbal, N, AlMajali, E, Alja’Afreh, SS, Johar, U, Shamim, A and Sharawi, MS (2021) Frequency agile multiple-input-multiple-output antenna design for 5G dynamic spectrum sharing in cognitive radio networks. Microwave and Optical Technology Letters 63, 889894.CrossRefGoogle Scholar
Nikam, P-B, Kumar, J, Sivanagaraju, V and Baidya, A (2022) Dual-band reconfigurable EBG loaded circular patch MIMO antenna using defected ground structure (DGS) and PIN diode integrated branch-lines (BLs). Measurement 195, .CrossRefGoogle Scholar
Cetiner, B-A, Qian, JY, Li, GP and De Flaviis, F (2005) A reconfigurable spiral antenna for adaptive MIMO systems. EURASIP Journal on Wireless Communications and Networking 3, 18.Google Scholar
Pan, H-K, Huff, G, Roach, T, Palaskas, Y, Pellerano, S, Seddighrad, P, Nair, VK, Choudhury, D, Bangerter, B and Bernhard, JT (2007) Increasing channel capacity on MIMO system employing adaptive pattern/polarization reconfigurable antenna. In IEEE Antennas and Propagation Society International Symposium, Honolulu, HI, USA, 481484.CrossRefGoogle Scholar
Piazza, D, Kirsch, N-J, Forenza, A, Heath, R-W and Dandekar, K-R (2008) Design and evaluation of a reconfigurable antenna array for MIMO systems. IEEE Transactions on Antennas and Propagation 56, 869881.CrossRefGoogle Scholar
Raj, J-S-K, Bonney, J, Herrero, P and Schoebel, J (2009) A reconfigurable antenna for MIMO application. In Loughborough Antennas & Propagation Conference, Loughborough, UK, 269272.CrossRefGoogle Scholar
Grau, A, Romeu, J, Lee, M-J, Blanch, S, Jofre, L and De Flaviis, F (2010) A dual-linearly-polarized MEMS-reconfigurable antenna for narrowband MIMO communication systems. IEEE Transactions on Antennas and Propagation 58, 417.CrossRefGoogle Scholar
Li, Z, Du, Z and Gong, K (2009) Compact reconfigurable antenna array for adaptive MIMO systems. IEEE Antennas and Wireless Propagation Letters 8, 13171320.Google Scholar
Mubasher, F, Wang, S, Chen, X and Ying, Z (2010) Study of reconfigurable antennas for MIMO systems. In International Workshop on Antenna Technology (iWAT), Lisbon, Portugal, 14.CrossRefGoogle Scholar
Lim, J-H, Jin, Z-J, Song, C-W and Yun, T-Y (2012) Simultaneous frequency and isolation reconfigurable MIMO PIFA using PIN diodes. IEEE Transactions on Antennas and Propagation 60, 59395946.CrossRefGoogle Scholar
Chamok, N-H, Yılmaz, M-H, Arslan, H and Ali, M (2016) High-gain pattern reconfigurable MIMO antenna array for wireless handheld terminals. IEEE Transactions on Antennas and Propagation 64, 43064315.CrossRefGoogle Scholar
Khan, M-S, Iftikhar, A, Shubair, R-M, Capobianco, A-D, Asif, S-M, Braaten, B-D and Anagnostou, D-E (2020) Ultra-compact reconfigurable band reject UWB MIMO antenna with four radiators. Electronics 9, .CrossRefGoogle Scholar