Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T11:00:33.507Z Has data issue: false hasContentIssue false

Scattering by PEC half-plane and disk placed on parallel planes

Published online by Cambridge University Press:  19 April 2022

Mstislav E. Kaliberda*
Affiliation:
School of Radiophysics, Biomedical Electronics and Computer Systems, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Leonid M. Lytvynenko
Affiliation:
Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
Sergey A. Pogarsky
Affiliation:
School of Radiophysics, Biomedical Electronics and Computer Systems, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
*
Author for correspondence: Mstislav E. Kaliberda, E-mail: KaliberdaME@gmail.com

Abstract

The scattering by the perfectly electric conducting (PEC) half-plane and PEC zero thickness disk placed on parallel planes is considered. The fields are represented in the spectral domain, i.e. in the domain of Fourier transform. The operator equations with respect to the Fourier amplitudes of the scattered field are obtained. The kernel functions of these equations contain poles. After regularization procedure, which is connected with the elimination of the poles, operator equations are converted to the system of singular integral equations. The convergence of the solution is based on the corresponding theorems. The scattered field consists of the plane wave, reflected by the infinite part of the half-plane, cylindrical waves, which appear as a result of scattering by the edge of the half-plane, and spherical waves, which appear as a result of scattering by the disk and multiple re-scattering by the disk-half-plane. The total near-field distribution and far-field patterns of cylindrical waves are presented.

Type
EM Field Theory
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jones, DS (1950) Note on diffraction by an edge. Quarterly Journal of Mechanics and Applied Mathematics 3, 420434.CrossRefGoogle Scholar
Jones, DS (1952) A simplifying technique in the solution of a class of diffraction problems. Quarterly Journal of Mathematics 3, 189196.CrossRefGoogle Scholar
Noble, D (1958) Methods based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. London: Pergamon Press.Google Scholar
Copson, ET (1946) On an integral equation arising in the theory of diffraction. Quarterly Journal of Mathematics os-17, 1934.CrossRefGoogle Scholar
Copson, ET (1950) Diffraction by a plane screen. Proceedings of the Royal Society of London 202, 277284.Google Scholar
Khestanov, RK (1968) Diffraction of a wave beam at a half-plane. Radiophysics and Quantum Electrons 11, 793799.CrossRefGoogle Scholar
Bertoni, HL, Green, A and Felsen, LB (1978) Shadowing an inhomogeneous plane wave by an edge. Journal of the Optical Society of America 68, 983989.CrossRefGoogle Scholar
Green, AC, Bertoni, HL and Felsen, LB (1979) Properties of the shadow cast by a half-screen when illuminated by a Gaussian beam. Journal of the Optical Society of America 69, 15031508.CrossRefGoogle Scholar
Rahmat-Samii, Y and Mittra, R (1978) Spectral analysis of high-frequency diffraction of an arbitrary incident field by a half plane – comparison with four asymptotic techniques. Radio Science 13, 3148.CrossRefGoogle Scholar
Gorobets, NN, Yeliseyeva, NP and Antonenko, YA (2012) Optimisation of radiation characteristics of wire-screened antennas. Telecommunications and Radio Engineering 71, 5969.CrossRefGoogle Scholar
Yeliseyeva, NP, Gorobets, AN, Katrich, VA and Nesterenko, MV (2017) Radiation fields of a system of two impedance crossed vibrators excited in-phase and placed over a rectangular screen. Progress in Electromagnetics Research B 77, 52503.CrossRefGoogle Scholar
Nomura, Y and Katsura, S (1955) Diffraction of electromagnetic waves by circular plate and circular hole. Journal of the Physical Society of Japan 10, 285304.CrossRefGoogle Scholar
Lytvynenko, LM, Prosvirnin, SL and Khizhnyak, AN (1988) Semiinversion of the operator with the using of method of moments in the scattering problems by the structures consisting of the thin disks. Preprint institute of radio astronomy. Academy of Sciences UKR SSR 19, 18 (in Russian).Google Scholar
Bouwkamp, CJ (1950) On the diffraction of electromagnetic waves by small circular disks and holes. Philips Research Reports 5, 401422.Google Scholar
Maixner, J and Andrejewski, W (1950) Strenge Theorie der Beugung ebener elektromagnetischer Wellen an der vollkommen leitenden Kreisscheibe und an der kreisförmigen Öffnung im vollkommen leitenden ebenen Schirm. Annalen der Physik 442, 157168.CrossRefGoogle Scholar
Hongo, K and Naqvi, QA (2007) Diffraction of electromagnetic wave by disk and circular hole in a perfectly conducting plane. PIER 68, 113150.CrossRefGoogle Scholar
Losada, V, Boix, RR and Horno, M (1999) Resonant modes of circular microstrip patches in multilayered substrates. IEEE Transactions on Microwave Theory and Techniques 47, 488498.CrossRefGoogle Scholar
Losada, V, Boix, RR and Horno, M (2000) Full-wave analysis of circular microstrip resonators in multilayered media containing uniaxial anisotropic dielectrics, magnetized ferrites, and chiral materials. IEEE Transactions on Microwave Theory and Techniques 48, 10571064.CrossRefGoogle Scholar
Losada, V, Boix, RR and Medina, F (2003) Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space. IEEE Transactions on Geoscience and Remote Sensing 41, 988997.CrossRefGoogle Scholar
Di Murro, F, Lucido, M, Panariello, G and Schettino, F (2015) Guaranteed-convergence method of analysis of the scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-space. IEEE Transactions on Antennas and Propagation 63, 36103620.CrossRefGoogle Scholar
Lucido, M, Panariello, G and Schettino, F (2017) Scattering by a zero-thickness PEC disk: a new analytically regularizing procedure based on Helmholtz decomposition and Galerkin method. Radio Science 52, 214.CrossRefGoogle Scholar
Balaban, MV, Sauleau, R, Benson, TM and Nosich, AI (2009) Dual integral equations technique in electromagnetic wave scattering by a thin disk. PIER B 16, 107126.CrossRefGoogle Scholar
Lucido, M, Balaban, MV and Nosich, AI (2021) Plane wave scattering from thin dielectric disk in free space: generalized boundary conditions, regularizing Galerkin technique and whispering gallery mode resonances. IET Microwaves, Antennas & Propagation 15, 11591170.CrossRefGoogle Scholar
Balaban, MV, Shapoval, OV and Nosich, AI (2013) THz wave scattering by a graphene strip and a disk in the free space: integral equation analysis and surface plasmon resonances. IOP Journal of Optics 15, 114007/9.Google Scholar
Tikhenko, ME, Radchenko, VV, Dukhopelnykov, SV and Nosich, AI (2021) Radiation characteristics of a double-layer spherical dielectric lens antenna with a conformal PEC disk fed by on-axis dipoles. IET Microwaves, Antennas & Propagation 15, 12491269.CrossRefGoogle Scholar
Kaliberda, M, Lytvynenko, L and Pogarsky, S (2022) Electromagnetic wave scattering by half-plane and disk placed in the same plane or circular hole in half-plane. Journal of Electromagnetic Waves and Applications. doi: 10.1080/09205071.2022.2032379.CrossRefGoogle Scholar
Schwarzschild, K (1901) Die beugung und polarisation des lichts durch einen. Spalt I. Mathematische Annalen 55, 177247.CrossRefGoogle Scholar
Kaliberda, ME, Litvinenko, LN and Pogarsky, SA (2010) Diffraction of H0m and E0m modes by a system of axially symmetric discontinuities in a coaxial circuit. Journal of Communications Technology and Electronics 55, 505511.CrossRefGoogle Scholar
Kaliberda, ME, Lytvynenko, LM, Pogarsky, SA and Roiuk, MP (2018) Diffraction of the H-polarized plane wave by a finite layered graphene strip grating. International Journal of Microwave and Wireless Technologies 11, 326333.CrossRefGoogle Scholar
Kaliberda, ME, Litvinenko, LN and Pogarsky, SA (2021) Operator method in the problem of the H-polarized wave diffraction by two semi-infinite gratings placed in the same plane. Radio Physics and Radio Astronomy 26, 350357.CrossRefGoogle Scholar
Kaliberda, M, Litvinenko, L and Pogarsky, S (2017) Method of singular integral equations in diffraction by semi-infinite grating: H-polarization case. Turkish Journal of Electrical Engineering Computer Sciences 25, 44964509.CrossRefGoogle Scholar
Zhang, L, Yang, J, Fu, X and Zhang, M (2013) Graphene disk as an ultra compact ring resonator based on edge propagating plasmons. Applied Physics Letters 103, 163114.CrossRefGoogle Scholar
Saidoglu, NY and Nosich, AI (2020) Method of analytical regularization in the analysis of axially symmetric excitation of imperfect circular disk antennas. Computers & Mathematics with Applications 79, 28722884.CrossRefGoogle Scholar
Muskhelishvili, NI (1972) Singular Integral Equations. Boundary Problems of Functions Theory and their Applications to Mathematical Physics. Groningen, The Netherlands: Wolters-Noordhoff (Revised translation from Russian).Google Scholar
Lifanov, IK (1996) Singular Integral Equations and Discrete Vortices. Utrecht, The Netherlands: VSP.CrossRefGoogle Scholar
Hills, NL and Karp, SN (1965) Semi-infinite diffraction gratings–I. Communications on Pure and Applied Mathematics 18, 203233.CrossRefGoogle Scholar