Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T13:31:54.988Z Has data issue: false hasContentIssue false

Self-consistent simulation of multi-walled CNT nanotransistors

Published online by Cambridge University Press:  05 November 2010

Davide Mencarelli*
Affiliation:
Università Politecnica delle Marche, Via Brecce Bianche 12, Ancona 60100, Italy. Phone: +39 071 2204840; Fax: +39 071 2204224.
Luca Pierantoni
Affiliation:
Università Politecnica delle Marche, Via Brecce Bianche 12, Ancona 60100, Italy. Phone: +39 071 2204840; Fax: +39 071 2204224.
Andrea D. Donato
Affiliation:
Università Politecnica delle Marche, Via Brecce Bianche 12, Ancona 60100, Italy. Phone: +39 071 2204840; Fax: +39 071 2204224.
Tullio Rozzi
Affiliation:
Università Politecnica delle Marche, Via Brecce Bianche 12, Ancona 60100, Italy. Phone: +39 071 2204840; Fax: +39 071 2204224.
*
Corresponding author: D. Mencarelli Email: d.mencarelli@univpm.it

Abstract

We present detailed results of the self-consistent analysis of carbon nanotube (CNT) field-effect transistors (FET), previously extended by us to the case of multi-walled/multi-band coherent carrier transport. The contribution to charge transport, due to different walls and sub-bands of a multi-walled CNT, is shown to be generally non-negligible. In order to prove the effectiveness of our simulation tool, we provide interesting examples about current–voltage characteristics of four-walled semi-conducting nanotubes, including details of numerical convergence and contribution of sub-bands to the calculation.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Davies, J.H.: The Physics of Low-Dimensional Semiconductors, Cambridge University Press, printed in USA, 1998.Google Scholar
[2]John, D.L.; Castro, L.C.; Pereira, P.J.S.; Pulfrey, D.L.: A Schrödinger-Poisson solver for modelling carbon nanotube FETs. Nanotechnology, 3 (2004), 6568.Google Scholar
[3]Pourfath, M.; Kosina, H.; Cheong, B.H.; Park, W.J.; Selberherr, S.: The effect of device geometry on the static and dynamic response of carbon nanotube field effect transistors, in Proc. 5th Conf. on Nanotechnology, Nagoya, Japan, 2005.Google Scholar
[4]Saito, R.; Dresselhaus, G.; Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes, Imp. Coll. Press, London, UK, 1998.CrossRefGoogle Scholar
[5]Pourfath, M. et al. : Improving the ambipolar behaviour of Schottky barrier carbon nanotube field effect transistors, in Proc. ESSDERC, Grenoble, France, 2004, 429432.CrossRefGoogle Scholar
[6]Rozzi, T.; Mencarelli, D.; Maccari, L.; Di Donato, A.; Farina, M.: Self-consistent analysis of carbon nanotube (CNT) transistors: state-of-the-art and crytical discussion, in Proc. 7th Int. Conf. on RF MEMs and RF Microsystems, Orvieto, Italy, 2006, 5961.Google Scholar
[7]Mencarelli, D.; Rozzi, T.; Maccari, L.; Di Donato, A.; Farina, M.: Standard electromagnetic simulators for the combined electromagnetic/quantum-mechanical analysis of carbon nanotubes. Phys. Rev. B, 75 (2007), 085402.CrossRefGoogle Scholar
[8]Jiménez, D.; Cartoixà, X.; Miranda, E.; Suñé, J.; Chaves, F.A.; Roche, S.: A simple drain current model for Schottky-barrier carbon nanotube field effect transistors. Nanotechnology, 18 (2007), 025201.CrossRefGoogle Scholar
[9]Lin, Y.-M.; Appenzeller, J.; Chen, Z.; Chen, Z.-G.; Cheng, H.-M.; Avouris, P.: High performance dual-gate carbon nanotube FETs with 40-nm gate length. IEEE Electron. Devices Lett., 26 (11) (2005), 14971502.Google Scholar
[10]Xia, T.; Register, L.F.; Banerjee, S.K.: Quantum transport in double-gate MOSFETs with complex band structure'. IEEE Trans. Electron Devices, 50 (6) (2003), 15111516.Google Scholar
[11]Guo, J.; Datta, S.; Lundstrom, M. A numerical study of scaling issues of Schottky-barrier of carbon nanotube transistors. IEEE Trans. Electron Devices, 51 (2) (2004), 172177.CrossRefGoogle Scholar
[12]Alam, K.; Lake, R.K.: Leakage and performance of zero-Schottky-barrier of carbon nanotube transistors. J. Appl. Phys., 98 (2005), 064307.CrossRefGoogle Scholar
[13]Fiori, G.; Iannacone, G.; Lundstrom, M.; Klimeck, G.: Three-dimensional atomistic simulation of carbon nanotube FETs with realistic geometry, in 35th European Solid-State Device Research Conf., Grenoble, IEEE Press, 2005, 537540.Google Scholar
[14]Castro, L.C.; Jhon, D.L.; Pulfrey, D.L.; Pourffath, M.; Gehring, A.; Kosina, H.: Method for predicting f/sub T/ for carbon nanotube FETs. IEEE Trans. Nanotechnol., 4 (6) (2005), 699704.CrossRefGoogle Scholar