Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T05:37:24.407Z Has data issue: false hasContentIssue false

Ultra-wide-bandwidth (UWB) microstrip monopole antenna using split ring resonator (SRR) structure

Published online by Cambridge University Press:  23 January 2018

Dalia M. Elsheakh*
Affiliation:
Microstrip Department, Electronics Research Institute, El-Tahrir St., Dokki, Giza, Egypt. Phone: +02 01010109073
Esmat A. Abdallah
Affiliation:
Microstrip Department, Electronics Research Institute, El-Tahrir St., Dokki, Giza, Egypt. Phone: +02 01010109073
*
Corresponding author: D. M. Elsheakh Email: daliaelsheakh@eri.sci.eg

Abstract

This paper presents a procedure to model an ultra wide-bandwidth (UWB) microstrip monopole antenna. The proposed antenna is composed of three different lengths of semi-circular shapes connected with circular disk and half circular modified ground plane. The proposed antenna has a size of 50 × 50 mm2 on a low-cost FR4 substrate. The antenna demonstrates impedance bandwidth of −10 dB extended from 1.5 to 11 GHz with discontinuous bandwidth at different interior operating bands. Two pairs of split ring resonator as metamaterial structure cells are inserted closely located from feeding transmission line of the antenna to achieve good impedance matching over the entire band of operation and improve the antenna performance. The fundamental parameters of the antenna including reflection coefficient, gain, radiation pattern and group delay are obtained and they meet the acceptable UWB antenna standard. High-frequency structure simulator ver. 14 is used as full-wave electromagnetic solver then the prototypes are fabricated and measured. Results show that the antenna is very suitable for the applications in UWB as well as wireless communication systems.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Siddiqui, J.Y.; Saha, C.; Antar, Y.M.M.: A novel ultrawideband (UWB) printed antenna with a dual complementary characteristic. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 974976.Google Scholar
[2]Navarro-Mendez, D.V.; Bataller, L.F.; Escudero, M.B.; Gallo, M.; Zambelan, D.: Compact wideband Vivaldi monopole for LTE mobile communications. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 10681071.CrossRefGoogle Scholar
[3]Unnikiishnan, D.; Kaddour, D.; Tedjini, S.; Bihar, E.; Saadaoui, M.: CPW-fed inkjet printed UWB antenna on ABS-PC for integration in modeled interconnect devices technology. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 11251127.Google Scholar
[4]Kikuta, K.; Hirose, A.: Compact folded-fin tapered slot antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 11921195.Google Scholar
[5]Amini, A.; Oraizi, H.; Amin Chaychi Zadeh, M.: Miniturized UWB log-periodic square fractal antenna. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 13221325.CrossRefGoogle Scholar
[6]Siddiqui, J.Y.; Saha, C.; Antar, Y.M.M.: Compact dual SRR loaded UWB monopole antenna with dual frequency and wideband notch characteristics. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 100103.CrossRefGoogle Scholar
[7]Koziel, S.; Ogurtsov, S.; Zieniuutycz, W.; Bekasiewwicz, A.: Design of a planar UWB dipole antenna with an integrated balun using surrogate based optimization. IEEE Antennas Wirel. Propag. Lett., 14 (2015), 366369.Google Scholar
[8]Alici, K.B.; Ozbay, E.: Electrically small split ring resonator antennas. J. App. Phys., 101 (2007), 083104.Google Scholar
[9]Zhu, S.; Ford, K.L.; Tennant, A.; Langley, R.J.: Loaded split ring antenna over AMC. Electron. Lett., 46 (14) (2010), 971972.Google Scholar
[10]Marques, R.; Mesa, F.; Martel, J.; Median, F.: Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design. IEEE Trans. Antennas. Propag., 51 (10) (2003), 25722581.Google Scholar
[11]Dardari, D.; D'Errico, R.; Roblin, C.; Sibille, A.; Win, M.: Ultrawide bandwidth RFID: the next generation. Proc. IEEE, 98 (9) (2010), 15701582.CrossRefGoogle Scholar
[12]Heires, V.; Belmkaddem, K.; Dehmas, F.; Denis, B.; Ouvry, L.; D'Errico, R.: UWB backscattering system for passive RFID tag ranging and tracking, in Proc. Int. Conf. Ultra Wideband, Bologna, Italy, 2011, 489–493.CrossRefGoogle Scholar
[13]Cruz, C.C.; Costa, J.R.; Fernandes, C.A.: Hybrid UHF/UWB antenna for passive indoor identification and localization systems. IEEE Trans. Antennas Propag., 61 (1) (2013), 354361.CrossRefGoogle Scholar
[14]Ray, K.P.; Ranga, Y.; Gabhale, P.: Printed square monopole antenna with semicircular base for ultra-wide bandwidth. Electron. Lett., 43 (5) (2007), 263265.Google Scholar
[15]John, M.; Ammann, M.J.: Optimization of impedance bandwidth for the printed rectangular monopole antenna. Microw. Opt. Technol. Lett., 47 (2) (2005), 153154.Google Scholar
[16]Erentok, A.; Ziolkowski, R.W.: An efficient metamaterial-inspire electrically-small antenna. Microw. Opt Technol. Lett., 49 (2007), 12871290.Google Scholar
[17]Erentok, A.; Ziolkowski, R.W.: Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag., 56 (2008), 691707.Google Scholar
[18]Erentok, A.; Ziolkowski, R.W.: Two-dimensional efficient metamaterial-inspired electrically small antenna. Microw. Opt Technol. Lett., 49 (2007), 16691673.Google Scholar
[19]Pandeeswari, R.; Raghavan, S.: Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching. Microw. Opt. Technol. Lett., 56 (2014), 23882392.CrossRefGoogle Scholar
[20]Sousa Neto, M.P.; Fernandes, H.C.C.; Moura, C.G.: Design of a ultrawideband monopole antenna using split ring resonator for notching frequencies. 56 (2014), 1471–1473.Google Scholar
[21]Brito, D.B.; Begaud, X.; D'Assunção, A.G.: Ultra wideband monopole antenna with Split Ring Resonator for notching frequencies. Antennas and Propagation (EuCAP), Barcelona, Spain, 2010.Google Scholar
[22]Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech., 47 (2009), 20752084.Google Scholar
[23]Johnston, R.H.; Mc Rory, J.G.: An improved small antenna radiation efficiency measurement method. IEEEAP-Magazine, 40 (1998), 4048.Google Scholar
[24]Raiva, A.P.; Sanchez, J.F.: A rectangular cavity for cell phone antenna efficiency measurement, in IEEE Antenna Propagation Symp, Washington, DC, USA, 3–8 July 2005, 2005.Google Scholar
[25]Pozar, D.M.; Kaufman, B.: Comparison of three methods for the measurement of printed antenna efficiency. IEEE Trans. Antennas Propag., 36 (1988), 136139.Google Scholar
[26]Bahramzy, P.; Pedersen, G.F.: Group delay of high Q antenna, in IEEE Antenna Propagation Symp., 2013.CrossRefGoogle Scholar
[27]Mohammadian, A.H.; Rajkotia, A.; Soliman, S.S.: Characterization of UWB transmit-receive antenna system, in IEEE Conf. on Ultra Wideband Systems and Technologies, Reston, VA, USA, 2003.Google Scholar