Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-08T11:24:40.610Z Has data issue: false hasContentIssue false

A carbon-nanotube-based frequency-selective absorber

Published online by Cambridge University Press:  26 October 2010

Ugo F. D'Elia
Affiliation:
MBDA Italia S.p.A., Missile Systems, Via Tiburtina Km 12.400, Roma, Italy.
Giuseppe Pelosi
Affiliation:
Dipartimento di Elettronica e Telecomunicazioni (DET), Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy. Phone: +39-055-4796751.
Stefano Selleri*
Affiliation:
Dipartimento di Elettronica e Telecomunicazioni (DET), Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy. Phone: +39-055-4796751.
Ruggero Taddei
Affiliation:
Dipartimento di Elettronica e Telecomunicazioni (DET), Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy. Phone: +39-055-4796751.
*
Corresponding author: S. Selleri Email: stefano.selleri@unifi.it

Abstract

A recently developed material based on carbon nanotubes is used here for the realization of single- and double-layered frequency-selective surfaces (FSSs) with relevant absorbing properties. The peculiar characteristics of carbon nanotubes are exploited to devise high-loss resonant ring structures periodically arranged to build the FSS. By introducing two layers of rings, an absorber with stable characteristics over a wide frequency band and over a wide range for the incident wave angle is achieved.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Salisbury, W.W.: Absorbent body for electromagnetic waves. U.S. Patent 2 599 944, 1952.Google Scholar
[2]Fante, R.L.; McCormack, M.T.: Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag., 36 (1988), 14431454. doi: 10.1109/8.8632.CrossRefGoogle Scholar
[3]Smith, F.C.: Design principles of broadband adaptive Salisbury screen absorber. Electron. Lett., 38 (2002), 10521054. doi: 10.1049/el:20020699.CrossRefGoogle Scholar
[4]Seman, F.C.; Cahill, R.; Fusco, V.F.: Salisbury screen with reduced angular sensitivity. Electron. Lett., 45 (2009), 147149. doi: 10.1049/el:20092811.CrossRefGoogle Scholar
[5]Seman, F.C.; Cahill, R.; Fusco, V.F.: Low profile Salisbury screen radar absorber with high impedance ground plane. Electron. Lett., 45 (2009), 1012. doi: 10.1049/el:20093098.CrossRefGoogle Scholar
[6]Chambers, B.: Frequency tuning characteristics of capacitively loaded Salisbury screen radar absorber. Electron. Lett., 30 (1994), 16261628.CrossRefGoogle Scholar
[7]Smith, F.C.: Design principles of broadband adaptive Salisbury screen absorber. Electron. Lett., 38 (2002), 10521054. doi: 10.1049/el:20020699.CrossRefGoogle Scholar
[8]Emerson, W.H.: Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propag., AP-21 (1973), 484490.CrossRefGoogle Scholar
[9]Munk, B.A.; Munk, P.; Pryor, J.: On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans. Antennas Propag., 55 (2007), 186193. doi: 10.1109/TAP.2006.888395.CrossRefGoogle Scholar
[10]Munk, B.A.: Frequency Selective Surfaces: Theory and Design, John Wiley and Sons, New York, NY, 2000.CrossRefGoogle Scholar
[11]Wang, L.; Zhou, R.; Xin, H.: Microwave (8–50 GHz) characterization of multi-walled carbon nanotube papers using rectangular waveguides”. IEEE Trans. Microw. Theory Tech., 56 (2008), 499506. doi: 10.1109/TMTT.2007.914627.CrossRefGoogle Scholar
[12]Uchida, S.; Martinez, A.; Song, Y.W.; Yshigure, T.; Yamashita, S.: Fabrication and characterization of carbon nanotube-polymer saturable absorbers for mode-locked lasers, in Conf. on Quantum Electronics and Laser Science, CLEO/QELS, 2008, 12.Google Scholar
[13]Kashiwagi, K.; Yamashita, S.; Yasu, Y.; Yaguchi, H.; Goh, C.S.; Set, S.Y.: Waveguide-type saturable absorber based on carbon nanotubes, in 31st European Conf. on Optical Communications, 2005, 517518.CrossRefGoogle Scholar
[14]Saib, A. et al. : Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans. Microw. Theory Tech., 54 (2006), 27452754. doi: 10.1109/TMTT.2006.874889.CrossRefGoogle Scholar
[15]Neo, C.P.; Varadan, V.K.: Optimization of carbon fiber composite for microwave absorber. IEEE Trans. Electromagn. Compat., 46 (2004), 102106. doi: 10.1109/TEMC.2004.823618.CrossRefGoogle Scholar
[16]Pelosi, G.; Coccioli, R.; Selleri, S.: Quick Finite Elements for Electromagnetic Waves, 2nd ed., Artech House, Norwood, MA, 2009.Google Scholar
[17]Pelosi, G.; Freni, A.; Coccioli, R.: A hybrid technique for analyzing the scattering from periodic structures, IEE Proc. H, 140 (1993), 6570.Google Scholar
[18]Hornik, K.; Stinchombe, M.; White, H.: Multilayer feed-forward networks are universal approximators. Neural Netw., 2 (1989), 359366. doi: 10.1016/0893-6080(89)90020-8.CrossRefGoogle Scholar
[19]Selleri, S.; Manetti, S.; Pelosi, G.: Neural network applications in microwave device design. Int. J. RF Microw. Comput.-Aided Eng., 12 (2002), 9097. doi: 10.1002/mmce.7001.CrossRefGoogle Scholar
[20]Manara, G.; Nepa, P.; Pelosi, G.; Pinto, A.; Selleri, S.: A general multi-segment artificial neural network architecture for the efficient evaluation of electromagnetic plane-wave diffraction. IEEE Trans. Antennas Propag., 55 (2007), 34763483. doi: 10.1109/TAP.2007.910356.CrossRefGoogle Scholar
[21]Haupt, R.L.; Werner, D.H.: Genetic Algorithms in Electromagnetics, John Wiley & Sons, Hoboken, NJ, 2007.CrossRefGoogle Scholar
[22]Selleri, S.; Bolli, P.; Pelosi, G.: Genetic algorithms for the determination of the nonlinearity model coefficients in passive intermodulation scattering. IEEE Trans. Electromagn. Compat., 46 (2004), 309311. doi: 10.1109/TEMC.2004.826880.CrossRefGoogle Scholar
[23]Agastra, E. et al. : Genetic algorithm optimization of high-efficiency wide-band multimodal square horns for discrete lenses. Prog. Electromagn. Res., 83 (2008), 335352. doi: 10.2528/PIER08061806.CrossRefGoogle Scholar