Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T16:09:32.515Z Has data issue: false hasContentIssue false

Completely integrated multilayered weave electro-textile antenna for wearable applications

Published online by Cambridge University Press:  17 October 2017

Esther F. Sundarsingh*
Affiliation:
SSN College of Engineering, Kalavakkam, Tamil Nadu, India. Phone: +919884207929
Malathi Kanagasabai
Affiliation:
Microwave Laboratory, Department of ECE, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
Vimal Samsingh Ramalingam
Affiliation:
SSN College of Engineering, Kalavakkam, Tamil Nadu, India. Phone: +919884207929
*
Corresponding author: Esther F. Sundarsingh Email: estherflorences@ssn.edu.in

Abstract

This paper proposes a unique, first of its kind fabrication technique for the making of textile antennas. A novel method that provides scope for automation in textile antenna production is presented here. A completely integrated textile antenna fabrication method that eliminates the tasks of positioning and fastening of the various components of a patch antenna is discussed. The technique employs multilayer weaving for the production of a wearable antenna on a cotton substrate. Silver yarn is used for the conductive regions of the textile antenna. Two layers of woven cotton serve to isolate the radiating patch from the ground plane of the antenna. The designed antenna was chosen to operate at the frequency of 2.45 GHz for Wireless Local Area Network. The built prototype resonated at 2.43 GHz with a |S11|of −18.62 dB. The integrated textile antenna exhibited a gain of 1.06 dBi at 2.43 GHz.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sanz-Izquierdo, B.; Miller, J.A.; Batchelo, J.C.; Sobhy, M.I.: Dual-band wearable metallic button antennas and transmission in body area networks. IET Microw. Antennas Propag., 4 (2010), 182190.CrossRefGoogle Scholar
[2] Raad, H.R.; Abbosh, A.I.; Al-Rizzo, H.M.; Rucker, D.G.: Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans. Antennas Propag., 61 (2013), 524531.CrossRefGoogle Scholar
[3] Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G.; Mohan, S.A.: Compact polyimide-based UWB antenna for flexible electronics. IEEE Antennas Wireless Propag. Lett., 11 (2012), 564567.CrossRefGoogle Scholar
[4] Osman, M.A.R.; Rahim, M.K.A.; Samsuri, N.A.; Salim, H.A.M.; Ali, M.F.: Embroidered fully textile wearable antenna for medical monitoring applications. Prog. Electromagn. Res., 117 (2011), 321337.CrossRefGoogle Scholar
[5] Szeto, A.Y.J.; Sharma, S.K.: RFID Based Indoor Navigational Aid for Persons with Severe Visual Impairments, in 29th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, Lyon, 2007, 63606363.CrossRefGoogle Scholar
[6] Sankaralingam, S.; Bhaskar, G.: Determination of dielectric constant of fabric materials and their use as substrates for design and development of antennas for wearable applications. IEEE Trans. Instrum. Meas., 59 (2010), 31223130.CrossRefGoogle Scholar
[7] Esther, F.S.; Malathi, K.; Alsath, M.G.N.: An investigation of a wearable antenna using human body modelling. Appl. Comput. Electromagn. Soc. J., 29 (2014), 777783.Google Scholar
[8] Graham, L.: An investigation into the feasibility of the integration of microwave circuitry into a woven textile. Dissertation, Loughborough University Institutional Repository. (retrieved on 01, December 2017), https://dspace.lboro.ac.uk/, 2013, 1231.Google Scholar
[9] Sanz-Izquierdo, B.; Huang, F.; Batchelor, J.C.: Covert dual-band wearable button antenna. IET J. Mag., 42 (2006), 668670.Google Scholar
[10] Locher, I.; Klemm, M.; Kirstein, T.; Troster, G.: Design and characterization of purely textile patch antennas. IEEE Trans. Adv. Packag., 29 (2006), 777788.CrossRefGoogle Scholar
[11] Leng, T.; Huang, X.; Chang, K.; Chen, J.; Abdalla, M.; Hu, Z.: Graphene nanoflakes printed flexible meandered line dipole antenna on paper substrate for low cost RFID and sensing applications. IEEE Antennas Wireless Propag. Lett., 15 (2016), 15651568.CrossRefGoogle Scholar
[12] Koji, F.; Kuniaki, Y.; Keiji, Y.; Haruichi, K.: A circularly polarized planar antenna on flexible substrate for ultra-wideband high-band applications. AEU – Int. J. Electron. Commun., 69 (2015), 13811386.Google Scholar
[13] Roh, J.S.; Chi, Y.S.; Lee, J.H.; Tak, Y.; Nam, S.; Kang, T.J.: Embroidered wearable multiresonant folded dipole antenna for FM reception. IEEE Antennas Wireless Propag. Lett., 9 (2010), 803806.CrossRefGoogle Scholar
[14] Kiourti, A.; Volakis, J.L.: High-geometrical-accuracy embroidery process for textile antennas with fine details. IEEE Antennas Wireless Propag. Lett., 14 (2015), 14741477.CrossRefGoogle Scholar
[15] Behera, B.K.; Rajesh, M.: 3-Dimensional weaving. Indian J. Fiber Text. Res., 33 (2008), 274287.Google Scholar
[16] McIlhagger, A.; Archer, E.: 3D Weaving. Axis Composites (retrieved on 20, June 2017), http://www.axiscomposites.com/3d%20weaving.html, 2012.Google Scholar
[17] Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd ed., Wiley, India, Reprint, 2012, 816825.Google Scholar
[18] Florin, S.C.M.; Adriana, M.: Dielectric behaviour of some woven fabrics on the basis of natural cellulosic fibers. Adv. Mater. Sci. Eng., 2014 (2014), 18.Google Scholar
[19] Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P.: Textile materials for the design of wearable antennas: a survey. Sensors, 12 (2012), 1584115857.CrossRefGoogle ScholarPubMed
[20] Huang, J.: The finite ground plane effect on the microstrip antenna radiation patterns. IEEE Trans. Antennas Propag., 31 (1983), 649653.CrossRefGoogle Scholar
[21] Baisakhiya, S.; Sivasamy, R.; Kanagasabai, M.; Periaswamy, S.: Novel compact UWB frequency selective surface for angular and polarization independent operation. Prog. Electromagn. Res. Lett., 40 (2013), 7179.CrossRefGoogle Scholar
[22] Ameelia, A.R.; Malathi, K.: Compact dual-band patch antenna using spiral shaped electromagnetic bandgap structures for high speed wireless networks. AEU – Int. J. Electron. Commun., 66 (2012), 963968.CrossRefGoogle Scholar
[23] Aboserwal, N.A.; Constantine, A.B.; Craig, R.B.: Impact of finite ground plane edge diffractions on radiation patterns of aperture. Prog. Electromagn. Res. B, 55 (2013), 121.CrossRefGoogle Scholar
[24] John, E.H.: Gain of directional antennas. Commun. Edge., 3 (1976), 17.Google Scholar
[25] Kamalaveni, A.; Ganesh Madhan, M.A.: Compact TRM antenna with high impedance surface for SAR reduction at 1800 MHz. AEU – Int. J. Electron. Commun., 70 (2016), 11921198.CrossRefGoogle Scholar
[26] Mhaske, S.S.; Kulkarni, G.A.; Tayade, R.L.: SAR in life tissue at GSM frequencies. Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2 (2012), 480483.Google Scholar
[27] Vladimir, H.: Planar antennas in proximity of human body models. Elektrorevenue., 3 (2012), 1013.Google Scholar
[28] Vivek, K.; Bharat, G.: On-body measurements of SS-UWB patch antenna for WBAN applications. AEU – Int. J. Electron Commun., 70 (2016), 668675.Google Scholar
[29] Peter, S.H.; Yang, H.: Wearable Antennas: Advances in the Design, Characterization, and Application – Antennas and Propagation for Body-Centric Wireless Communications, 2nd ed., Artech House, Norwood, MA, 2012.Google Scholar
[30] Nacer, C.; Maxim, Z.; Ronan, S.: Progress in Compact Antennas – Antennas for Body Centric Wireless Communications at Millimeter Wave Frequencies, InTech, USA, 2014.Google Scholar
[31] Elias, N.A.; Samsuri, N.A.; Rahim, M.K.A.; Othman, N.; Jalil, M.E.: Effects of human body and antenna orientation on dipole textile antenna performance and SAR, in 2012 IEEE Asia-Pacific Conf. on Applied Electromagnetics (APACE), Melaka, 2012, 132136.CrossRefGoogle Scholar
[32] Xu, F.; Yao, L.; Zhao, D.: Effect of weaving direction of conductive yarns on electromagnetic performance of 3D integrated microstrip antenna. Appl. Compos. Mater., 20 (2013), 827.CrossRefGoogle Scholar
[33] Jung, S.R.; Yong, S.C.; Tae, J.K.: Wearable textile antennas. Int. J. Fashion Des. Technol. Educ., (3) (2010), 135153.Google Scholar