Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T05:04:33.478Z Has data issue: false hasContentIssue false

Millimeter wave antenna with frequency selective surface (FSS) for 79 GHz automotive radar applications

Published online by Cambridge University Press:  10 February 2016

Basem Aqlan
Affiliation:
Department of Electrical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia. Phone: +96614676805
Hamsakutty Vettikalladi*
Affiliation:
Department of Electrical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia. Phone: +96614676805
Majeed A.S. Alkanhal
Affiliation:
Department of Electrical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia. Phone: +96614676805
*
Corresponding author: H. Vettikalladi Email: hvettikalladi@ksu.edu.sa

Abstract

In this paper a high gain aperture-coupled membrane antenna with a frequency selective surface (FSS) on a superstrate layer has been investigated. The base membrane antenna consists of a microstrip patch on the top of Roger RT-5580 substrate, supported by FR4 and is excited through an aperture fed by substrate-integrated waveguide (SIW). The CST Microwave Studio simulation results show that the proposed membrane structure has an impedance bandwidth (BW) of 8.85% from 75.97 to 82.96 GHz with a gain of 6.29 dBi at 79 GHz. To improve the gain, a superstrate layer is loaded above the membrane antenna, which increases the gain by 9.11 dB at 79 GHz. Furthermore by using FSS under superstrate layer, the gain is again increased by 2.5 dB. The total antenna structure provides a gain of 17.9 dBi at 79 GHz by keeping the same BW. The measured results are provided for the input matching (S11) only, the simulated results for the antenna gain and radiation patterns are obtained with the use of CST and are validated by using HFSS. The measured S11 BW of the total antenna is from 75.57 to 84.18 GHz (10.89%), which is in agreement with the simulated results.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Frenzel, L.: Millimeter waves will expand the wireless future. Electron. Des. Mag., 61 (2013), 3036.Google Scholar
[2] Daniels, R.C.; Heath, R.W. Jr: 60 GHz wireless communications: emerging requirements and design recommendations. IEEE Vehicular Technol. Mag., 2 (2007), 4150.Google Scholar
[3] Brizzolara, D.: 79 GHz high resolution short range automotive radar evolution. Microw. J., 56 (2013), 78–+.Google Scholar
[4] Wenger, J.: Automotive radar-status and perspectives, in Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC'05. IEEE, 2005, 4.Google Scholar
[5] Yujiri, L.: Passive millimeter wave imaging, in Microwave Symp. Digest, 2006. IEEE MTT-S Int., 2006, 98101.Google Scholar
[6] Rohling, H.: Development milestones in 24 GHz automotive radar systems, in Radar Symp. (IRS), 2010 11th Int., 2010, 15.Google Scholar
[7] Gresham, I. et al. : Ultra-wideband radar sensors for short-range vehicular applications. IEEE Trans. Microw. Theory Tech., 52 (2004), 21052122.Google Scholar
[8] Psychogiou, D. et al. : Millimeter-wave phase shifter based on waveguide-mounted RF-MEMS. Microw. Opt. Technol. Lett., 55 (2013), 465468.Google Scholar
[9] Tokumitsu, T.; Kubota, M.; Sakai, K.; Kawai, T.: Application of GaAs device technology to millimeter-waves. SEI Tech. Rev., 79 (2014), 57.Google Scholar
[10] Russer, P.: Si and SiGe millimeter-wave integrated circuits. IEEE Trans. Microw. Theory Tech., 46 (1998), 590603.Google Scholar
[11] Bauer, F.; Wang, X.; Menzel, W.; Stelzer, A.: A 79-GHz radar sensor in LTCC technology using grid array antennas. IEEE Trans. Microw. Theory Tech., 61 (2013), 25142521.Google Scholar
[12] Wang, X.; Stelzer, A.: A 79-GHz LTCC patch array antenna using a laminated waveguide-based vertical parallel feed. IEEE Antennas Wireless Propag. Lett., 12 (2013), 987990.Google Scholar
[13] Adane, A.; Gallée, F.; Person, C.; Puyal, V.; Villeneuve, C.; Dragomirescu, D.: Implementation of broadband microstrip-U coupled patch array on Si/BCB membrane for beamforming applications at 60 GHz, in Antennas and Propagation (EUCAP), Proc. of the 5th European Conf. on, 2011, 12631267.Google Scholar
[14] Kyro, M.; Kolmonen, V.; Vainikainen, P.; Titz, D.; Villeneuve, C.: 60 GHz membrane antenna array for beam steering applications, in Antennas and Propagation (EUCAP), 2012 6th European Conf. on, 2012, 27702774.Google Scholar
[15] Neculoiu, D.; Pons, P.; Plana, R.; Blondy, P.; Mueller, A.; Vasilache, D.: MEMS antennas for millimeter-wave applications, in Micromachining and Microfabrication, 2001, 6672.Google Scholar
[16] Neculoiu, D. et al. : Membrane supported Yagi–Uda antennae for millimetre-wave applications. IEE Proc.-Microw. Antennas Propag., 151 (2004), 311314.Google Scholar
[17] Vettikalladi, H.; Lafond, O.; Himdi, M.: Membrane antenna arrays fed by substrate integrated waveguide for V-Band communication. Microw. Opt. Technol. Lett., 55 (2013), 17461752.Google Scholar
[18] Vettikalladi, H.; Alkanhal, M.A.: BCB-Si based wide band millimeter wave antenna fed by substrate integrated waveguide. Int. J. Antennas Propag., 2013 (2013).Google Scholar
[19] Kumar, H.; Jadhav, R.; Ranade, S.: A review on substrate integrated waveguide and its microstrip interconnect. J. Electron. Commun. Eng., 3 (2010), 3640.Google Scholar
[20] Abdel-Wahab, W.M.; Safavi-Naeini, S.: Wide-bandwidth 60-GHz aperture-coupled microstrip patch antennas (MPAs) fed by substrate integrated waveguide (SIW). IEEE Antennas Wireless Propag. Lett., 10 (2011), 10031005.Google Scholar
[21] Oh, S.S.; Heo, J.; Kim, D.H.; Lee, J.W.; Song, M.S.; Kim, Y.S.: Broadband millimeter-wave planar antenna array with a waveguide and microstrip-feed network. Microw. Opt. Technol. Lett., 42 (2004), 283287.Google Scholar
[22] Navarro, J.: Wide-band, low-profile millimeter-wave antenna array. Microw. Opt. Technol. Lett., 34 (2002), 253255.Google Scholar
[23] Ge, Y.; Wang, C.: A millimeter-wave wideband high-gain antenna based on the fabry-perot resonator antenna concept. Prog. Electromagn. Res. C, 50 (2014), 103111.Google Scholar
[24] Ge, Y.; Esselle, K.P.; Hao, Y.: Design of low-profile high-gain EBG resonator antennas using a genetic algorithm. IEEE Antennas Wireless Propag. Lett., 6 (2007), 480483.Google Scholar
[25] Choi, W.; Cho, Y.H.; Pyo, C.-S.; Choi, J.-I.: A high-gain microstrip patch array antenna using a superstrate layer. ETRI J., 25 (2003), 407411.Google Scholar
[26] Meriah, S.; Cambiaggio, E.; Staraj, R.; Bendimerad, F.: Gain enhancement for microstrip reflectarray using superstrate layer. Microw. Opt. Technol. Lett., 46 (2005), 152154.Google Scholar
[27] Vettikalladi, H.; Lafond, O.; Himdi, M.: High-efficient and high-gain superstrate antenna for 60-GHz indoor communication. IEEE Antennas Wireless Propag. Lett., 8 (2009), 14221425.Google Scholar
[28] Trentini, G.V.: Partially reflecting sheet arrays. IRE Trans. Antennas Propag., 4 (1956), 666671.Google Scholar
[29] Feresidis, A.P.; Vardaxoglou, J.: High gain planar antenna using optimised partially reflective surfaces. IEE Proc.-Microw. Antennas Propag., 148 (2001), 345350.Google Scholar
[30] Foroozesh, A.; Shafai, L.: Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Trans. Antennas Propag., 58 (2010), 258270.CrossRefGoogle Scholar
[31] Yan, L.; Hong, W.; Wu, K.; Cui, T.: Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines, in Microwaves, Antennas and Propagation, IEE Proc., 2005, 3542.CrossRefGoogle Scholar
[32] Henry, M.; Free, C.; Izqueirdo, B.S.; Batchelor, J.; Young, P.: Millimeter wave substrate integrated waveguide antennas: design and fabrication analysis. IEEE Trans. Advanced Pack., 32 (2009), 93100.CrossRefGoogle Scholar
[33] Foroozesh, A.; Shafai, L.: 2-D truncated periodic leaky-wave antennas with reactive impedance surface ground planes, in Proc. IEEE Int. Symp, 2006, 1518.Google Scholar