Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T13:55:09.277Z Has data issue: false hasContentIssue false

SICL based Ka-band series SPDT switch for duplexer application

Published online by Cambridge University Press:  17 April 2024

Saurabh Shukla
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, India
Soumava Mukherjee*
Affiliation:
Department of Electrical Engineering, Indian Institute of Technology, Jodhpur, India
*
Corresponding author: Soumava Mukherjee; Email: soumava@iitj.ac.in

Abstract

This paper presents a Ka-band series single-pole double-throw (SPDT) switch circuit realized in substrate-integrated coaxial line (SICL) environment for time division duplex operation. It is designed with a low-cost printed circuit board (PCB) technique. The size of the proposed circuit is $3.1\lambda_{g} \times 5.9\lambda_{g}$, where λg is the guided wavelength at the center frequency of 27.75 GHz. In this circuit, a SICL-based SPDT switching circuit is proposed with radio frequency (RF) isolation network where the shunt connection of butterfly stubs is in an asymmetric stripline environment. The proposed circuit exhibits less than 2 dB insertion loss at 27–27.9 GHz and less than 2.5 dB insertion loss at 27–28.5 GHz. The design offers good impedance matching in the Transmit (Tx) and Receive (Rx) channels from the common Tx/Rx input channel, along with more than 24 dB isolation between ON and OFF state output channels. The proposed circuit is suitable for millimeter-wave communication systems.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Misran, MH, Shairi, NA, The, GH and Said, MAM (2012) Design and performance analysis of single biasing based SPDT switch for wireless data communications. In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Melaka, Malaysia.CrossRefGoogle Scholar
Hansen, N, Rave, C, Rohrdantz, B and Jacob, AF (2016) A compensated dual-band SPDT switch for radar duplexers at s- and x-band. In 2016 46th European Microwave Conference (EuMC), 699702.CrossRefGoogle Scholar
Rave, C, Storjohann, FO and Jacob, AF (2014) A compact bandpass filter integrated SPDT pin switch at x-band. In GeMiC 2014; German Microwave Conference, 14.Google Scholar
Shairi, NA, Ahmad, BH and Khang, ACZ (2011) Design and analysis of broadband high isolation of discrete packaged pin diode SPDT switch for wireless data communication. In 2011 IEEE International RF & Microwave Conference, 9194.CrossRefGoogle Scholar
Shairi, NA, Ahmad, BH, Abdul Aziz, MZA and Osman, AF (2011) SPDT switch with defected ground structure for time division duplex switching in wireless data communication system. In 2011 IEEE International RF & Microwave Conference, 238241.Google Scholar
Chen, H, Che, W, Zhang, T, Chao, Y and Feng, W (2016) SIW SPDT switch based on switchable HMSIW units. In 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 13.Google Scholar
Lim, I and Lim, S (2014) Substrate-integrated-waveguide (SIW) single-pole-double-throw (SPDT) switch for x-band applications. IEEE Microwave and Wireless Components Letters 24(8), 536538.CrossRefGoogle Scholar
Jang, S, Kong, S, Lee, H-D, Park, J, Kim, K-S and Lee, K-C (2018) 28 GHz 1.8 dB insertion loss SPDT switch with 24 dB isolation in 65 nm CMOS. In 2018 48th European Microwave Conference (EuMC), 835838.Google Scholar
Gatti, F, Bozzi, M, Perregrini, L, Wu, K and Bosisio, RG (2006) A novel substrate integrated coaxial line (SICL) for wide-band applications. In 2006 European Microwave Conference. IEEE, 16141617.CrossRefGoogle Scholar
Krishna, IS and Mukherjee, S (2018) A substrate integrated coaxial line dual-band balun for 5G applications. In 2018 Asia-Pacific Microwave Conference (APMC), 11901192.CrossRefGoogle Scholar
Mukherjee, S (2017) Design of four-way substrate integrated coaxial line (SICL) power divider for k band applications. In 2017 IEEE MTT-S International Microwave and RF Conference (IMaRC), 14.Google Scholar
Shukla, S and Mukherjee, S (2019) Compact Ka band bias tee network using substrate integrated coaxial line technology. In TENCON 2019–2019 IEEE Region 10 Conference (TENCON). IEEE, 12121215.CrossRefGoogle Scholar
Shukla, S and Mukherjee, S (2024) A low-cost 24 GHz single-stage amplifier using SICL based stepped impedance matching network. AEU – International Journal of Electronics and Communications 173, .CrossRefGoogle Scholar
Shukla, S and Mukherjee, S (2023) A low cost broadband millimeter wave bias tee network using SICL technology. Microwave and Optical Technology Letters 65, 31713179.Google Scholar
Wadell, BC (1991) Transmission Line Design Handbook. Norwood, MA: Artech House Inc., 291293.Google Scholar
Hong, J-SG and Lancaster, MJ (2004) Microstrip Filters for RF/Microwave Applications. New York: John Wiley & Sons, 627.Google Scholar
Kwon, H, Lim, H and Kang, B (2007) Design of 6–18 GHz wideband phase shifters using radial stubs. IEEE Microwave and Wireless Components Letters 17(3), 205207.CrossRefGoogle Scholar
Fooks, EH and Zakarevicius, RA (1990) Microwave Engineering Using Microstrip Circuits. USA: Prentice-Hall, Inc., 198203.Google Scholar
Majidifar, S and Hayati, M (2017) Design of a sharp response microstrip lowpass filter using taper loaded and radial stub resonators. Turkish Journal of Electrical Engineering and Computer Sciences 25(5), 40134022.CrossRefGoogle Scholar
Chen, Q, Chen, X, Cai, H and Chen, F (2020) Schottky diode large-signal equivalent-circuit parameters extraction for high-efficiency microwave rectifying circuit design. IEEE Transactions on Circuits and Systems II: Express Briefs 67(11), 27222726.Google Scholar