Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-14T00:16:46.775Z Has data issue: false hasContentIssue false

A subharmonic front-end in SiGe:C technology for 94-GHz imaging arrays

Published online by Cambridge University Press:  22 June 2009

Erik Öjefors*
Affiliation:
Institute of High-Frequency and Communication Technology, University of Wuppertal, Rainer-Gruenter-Str. 21, D-42119 Wuppertal, Germany.
Johannes Borngräber
Affiliation:
IHP Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
Falk Korndörfer
Affiliation:
IHP Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
Ullrich Pfeiffer
Affiliation:
Institute of High-Frequency and Communication Technology, University of Wuppertal, Rainer-Gruenter-Str. 21, D-42119 Wuppertal, Germany.
*
Corresponding author: E. Öjefors Email: erik.ojefors@ieee.org

Abstract

The design of a subharmonic downconverter for 94-GHz imaging arrays in SiGe:C technology is presented. A three-stage differential low-noise amplifier (LNA) with lumped matching networks is used together with a subharmonic mixer driven by a single-pole local-oscillator poly-phase network to form the front-end. The LNA yields 15 dB gain at 94 GHz, while the mixer provides 5 dB conversion gain over a 10 GHz IF bandwidth. The integrated downconverter provides 20 dB conversion gain at 94 GHz with an input 1-dB compression point of −31 dBm and has a current consumption of 45 mA at a 3.3 V supply voltage. The total required die area of the complete downconverter (excluding pad frame) is 0.1 mm, thus making it particularly suitable as a front-end in multi-channel receiver systems.

Type
Original Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Babakhani, A.; Guan, X.; Komijani, A.; Natarajan, A.; Hajimiri, A.: A 77-GHz phased array transceiver with on-chip antennas in silicon: Receiver and antennas. IEEE J. Solid-State Circuits, 41 (2006), 27952806, doi: 10.1109/JSSC.2006.884811.CrossRefGoogle Scholar
[2]Chevalier, P. et al. : 300 GHz self-aligned SiGeC HBT optimized towards CMOS compatiblity, in Proc. Bipolar/BiCMOS Circuits and Technology Meeting, 2005, pp. 120123, doi: 10.1109/BIPOL.2005.1555214.CrossRefGoogle Scholar
[3]Öjefors, E.; Sönmez, E.; Chartier, S.; Schick, C.; Rydberg, A.; Schumacher, H.: Monolithic integration of a folded dipole antenna with a 24-GHz receiver in SiGe HBT technology. IEEE Trans. Microwave Theory Tech., 55 (2005), 14671475, doi: 10.1109/TMTT.2007.900315.CrossRefGoogle Scholar
[4]Chartier, S.; Schleicher, B.; Korndorfer, F.; Glisic, S.; Fischer, G.; Schumacher, H.: A fully integrated fully differential low-noise amplifier for short range automotive radar using a SiGe:C BiCMOS technology, in European Microwave Integrated Circuit Conf. (EuMIC) 2007, pp. 407410, doi: 10.1109/EMICC.2007.4412735.CrossRefGoogle Scholar
[5]Laskin, E.; Chevalier, P.; Chantre, A.; Sautreuil, B.; Voinigescu, S.P.: 80/160-GHz transceiver and 140-GHz amplifier in SiGe technology, in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2007, pp. 153156, doi: 10.1109/RFIC.2007.380854.CrossRefGoogle Scholar
[6]Müller, A.; Thiel, M.; Irion, H.; Ruoss, H.-O.: A 122 GHz SiGe active subharmonic mixer, in European Gallium Arsenide and Other Semiconductor Application Symp., 2005 (EGAAS 2005), 2005, pp. 5760.Google Scholar
[7]Svitek, R.; Raman, S.: A SiGe active sub-harmonic front-end for 5–6 GHz direct-conversion receiver applications, in 2003 IEEE MTT-S Int. Microwave Symp. Digest, 2003, pp. 675678.Google Scholar
[8]Lindberg, P.; Öjefors, E.; Sönmez, E.; Rydberg, A.: A SiGe HBT 24 GHz sub-harmonic direct-conversion IQ demodulator, in 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, 2004, pp. 247250, doi: 10.1109/SMIC.2004.1398214.CrossRefGoogle Scholar
[9]Parsa, A.; Razavi, B.: A 60 GHz CMOS receiver using a 30 GHz LO, in IEEE Int. Solid-State Circuits Conf., 2008 (ISSCC 2008), Digest of Technical Papers, 2008, pp. 190191, doi: 10.1109/ISSCC.2008.4523121.CrossRefGoogle Scholar
[10]Öjefors, E.; Pfeiffer, U.R.: A 94-GHz monolithic front-end for imaging arrays in SiGe:C technology. in European Microwave Integrated Circuit Conf., 2008 (EuMIC 2008), 2008, pp. 422425, doi: 10.1109/EMICC.2008.4772319.CrossRefGoogle Scholar
[11]Heinemann, B. et al. : Novel collector design for high-speed SiGe:C HBTs, in International Electron Devices Meeting, 2002 (IEDM '02) Digest, 2002, pp. 775778, doi: 10.1109/IEDM.2002.1175953.CrossRefGoogle Scholar
[12]Sönmez, E.; Chartier, S.; Trasser, A.; Schumacher, H.: Isolation issues in multifunctional Si/SiGe ICs at 24 GHz, in 2005 IEEE MTT-S Int. Microwave Symp. Digest, 2005, pp. 169172, doi: 10.1109/MWSYM.2005.1516550.CrossRefGoogle Scholar
[13]Koh, K.-J.; Rebeiz, G.M.: 0.13-um CMOS phase shifters for X-, Ku-, and K-band phased arrays. IEEE J. Solid-State Circuits, 42 (2007), 25352546, doi: 10.1109/JSSC.2007.907225.CrossRefGoogle Scholar
[14]Gordon, M.; Yao, T.; Voinigescu, S.P.: 65-GHz receiver in SiGe BiCMOS using monolithic inductors and transformers, in 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, 2006, pp. 265268, doi: 10.1109/SMIC.2005.1587965.CrossRefGoogle Scholar
[15]Mikkelsen, J.H.; Jensen, O.K.; Larsen, T.: Measurement and modeling of coupling effects of CMOS on-chip coplanar inductors, in 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Digest of Papers, 2004, pp. 3740, doi: 10.1109/SMIC.2004.1398161.CrossRefGoogle Scholar
[16]Goren, D. et al. : An interconnect-aware methodology for analog and mixed signal design, based on high bandwidth (over 40 GHz) on-chip transmission line approach, in Proc. 2002 Design, Automation and Test in Europe Conf. and Exhibition (DATE’02), 2002.Google Scholar
[17]Zwick, T.; Tretiakov, Y.; Goren, D.: On-chip SiGe transmission line measurements and model verification up to 110 GHz. IEEE Microwave Wireless Compon. Lett., 15 (2005), 6567, doi: 10.1109/LMWC.2004.842817.CrossRefGoogle Scholar