Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-13T16:02:42.869Z Has data issue: false hasContentIssue false

Effect of pouterin, a protein from Pouteria torta (Sapotaceae) seeds, on the development of Anagasta kuehniella (Lepidoptera: Pyralidae)

Published online by Cambridge University Press:  01 March 2009

Ana Paula de A. Boleti
Affiliation:
Departamento de Bioquímica/IB, Universidade Estadual de Campinas, PO Box 6109, 13083-970Campinas, SP, Brazil
Carlos Eduardo G. Kubo
Affiliation:
Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Depto de Tecnologia de Alimentos e Saúde Pública, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, CP 549, CEP 79070-900, Campo Grande, MS, Brazil
Maria Lígia R. Macedo*
Affiliation:
Departamento de Bioquímica/IB, Universidade Estadual de Campinas, PO Box 6109, 13083-970Campinas, SP, Brazil Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Depto de Tecnologia de Alimentos e Saúde Pública, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, CP 549, CEP 79070-900, Campo Grande, MS, Brazil
Get access

Abstract

Larvae of the Mediterranean flour moth (Anagasta kuehniella Zeller) cause major losses in stored grains throughout the world. In this study, pouterin, a lectin-like protein isolated from Pouteria torta (Mart.) Radlk. seeds, was tested for activity against A. kuehniella larvae. Pouterin did not produce significant effects on survival; however, at c. 1% w/w concentration in artificial diet, it produced a 71.4% reduction in average weight of the larvae. A dietary utilisation assay showed a reduction in efficiency of conversion of ingested food, efficiency of conversion of digested food and approximate digestibility, as well as an increase in metabolic cost. Pouterin increased the level of trypsin in the midgut and faeces of larvae. We conclude that pouterin possesses an insecticidal effect against A. kuehniella larvae and this effect may be mediated by the binding of pouterin to chitin components of the peritrophic membrane, or glycosylated proteins in the insect midgut.

Type
Research Paper
Copyright
Copyright © ICIPE 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bate, N. J. and Rothstein, S. J. (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant Journal 16, 561569.CrossRefGoogle ScholarPubMed
Boleti, A. P. A., Freire, M. G. M., Coelho, M. B., Silva, W., Baldasso, P. A., Gomes, V. M., Marangoni, S., Novello, J. C. and Macedo, M. L. R. (2007) Insecticidal and antifungal activity of a protein from Pouteria torta seeds with lectin-like properties. Journal of Agricultural and Food Chemistry 55, 26532658.Google Scholar
Boleti, A. P. A., Ventura, C. A., Justo, G. Z., Silva, R. A., Sousa, A. C. T., Ferreira, C. V., Yano, T. and Macedo, M. L. R. (2008) Pouterin, a novel potential cytotoxic lectin-like protein with apoptosis-inducing activity in tumorigenic mammalian cells. Toxicon 51, 13211330.Google Scholar
Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities for proteins utilizing the principle of protein dye binding. Anal. Biochem. 72, 248254.CrossRefGoogle Scholar
Carlini, C. R. and Grossi-de-Sá, M. F. (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40, 15151539.Google Scholar
Coelho, M. B., Marangoni, S. and Macedo, M. L. R. (2007) Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae). Comparative Biochemistry and Physiology, Part C 146, 406414.Google Scholar
Erlanger, F., Kokowsky, N. and Cohen, W. (1961) The preparation and properties of two chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics 95, 271278.Google Scholar
Fabre, C., Causse, H., Mourey, L., Koninkx, J., Riviere, M., Puzo, G., Samama, J. P. and Rougé, P. (1998) Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cvRAZ-1) seeds. Biochemical Journal 329, 551560.CrossRefGoogle ScholarPubMed
Ferry, N., Edwards, M. G., Gatehouse, J. A. and Gatehouse, A. M. R. (2004) Plant-insect interactions: molecular approaches to insect resistance. Current Opinion in Biotechnology 15, 155161.CrossRefGoogle ScholarPubMed
Fitches, E. and Gatehouse, J. A. (1998) A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea). Journal of Insect Physiology 44, 12131224.Google Scholar
Hackman, R. H. and Goldberg, M. (1964) New substrate for use with chitinases. Anal. Biochem. 8, 397401.Google Scholar
Koul, O., Daniewski, W. M., Multani, J. S., Gumulka, M. and Singh, G. (2003) Antifeedant effects of the limonoids from Entandrophragma candolei (Meliaceae) on the gram pod borer Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Agricultural and Food Chemistry 51, 72717275.CrossRefGoogle ScholarPubMed
Laemmli, V. K. (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227, 680685.Google Scholar
Macedo, M. L. R., Fernandes, K. V. S., Sales, M. P. and Xavier-Filho, J. (1993) Vicilins variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus). Comparative Biochemistry and Physiology C 105, 8994.Google Scholar
Macedo, M. L. R., Freire, M. G. M., Novello, J. C. and Marangoni, S. (2002) Talisia esculenta lectin and larval development of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae). Biochimica et Biophysica Acta 1571, 8388.CrossRefGoogle ScholarPubMed
Macedo, M. L. R., Damico, D. C. S., Freire, M. G. M., Toyama, M. H., Marangoni, S. and Novello, J. C. (2003) Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). Journal of Agricultural and Food Chemistry 51, 29802986.CrossRefGoogle ScholarPubMed
Macedo, M. L. R., Freire, M. G. M., Cabrini, E. C., Toyama, M. H., Novello, J. C. and Marangoni, S. (2003) A trypsin inhibitor from Peltophorum dubium seeds active against pest proteases and its effect on the survival of Anagasta kuehniella (Lepidoptera: Pyralidae). Biochimica et Biophysica Acta 1621, 170181.Google Scholar
Macedo, M. L. R., Freire, M. G. M., Martins, L. T. D., Martinez, D. S., Gomes, V. M., Smolka, M. B., Toyama, M. H., Marangoni, S. and Coelho, L. C. B. B. (2004) Novel protein from Labramia bojeri A. DC. seeds homologue to Kunitz-type trypsin inhibitor with lectin-like properties. Journal of Agricultural and Food Chemistry 52, 75487554.Google Scholar
Macedo, M. L. R., Freire, M. G. M., Silva, M. B. R. and Coelho, L. C. B. B. (2007) Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comparative Biochemistry and Physiology 146, 486498.CrossRefGoogle ScholarPubMed
Michaud, D., Faye, L. and Yalle, S. (1993) Electrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrilamide gels and class-specific proteinase inhibitors. Electrophoresis 14, 9499.Google Scholar
Mordue, L. and Blackwell, A. J. (1993) Azadirachtin: an update. Journal of Chemical Ecology 15, 121128.Google Scholar
Powel, K. S., Gatehouse, A. M. R., Hilder, V. A., Van Damme, E. J. M., Peumans, W. J., Boonjawat, J., Horsham, K. and Gatehouse, J. A. (1995) Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomologia Experimentalis et Applicata 75, 6165.CrossRefGoogle Scholar
Scriber, J. M. and Slansky, F. Jr (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26, 183211.Google Scholar
Tellan, R. L., Wijffels, G. and Willadsen, P. (1999) Peritrophic matrix proteins. Insect Biochemistry and Molecular Biology 29, 87101.Google Scholar
Uchôa, A. F., DaMatta, R. A., Retamal, C. A., Albuquerque-Cunha, J. M., Souza, S. M., Samuels, R. I., Silva, C. P. and Xavier-Filho, J. (2006) Presence of the storage seed protein vicilin in internal organs of larval Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Insect Physiology 52, 169178.Google Scholar
Van Damme, E. J. M., Peumans, W. J., Barre, A. and Rougé, P. (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critical Reviews in Plant Sciences 17, 575692.CrossRefGoogle Scholar
Vasconcelos, I. M. and Oliveira, J. T. A. (2004) Antinutritional properties of plant lectins. Toxicon 44, 17371747.Google Scholar
Wearing, C. H. (1998) Cross-resistance between azinphos-methyl and tebufenozide in the green headed leafroller, Planotortix octo. Pesticide Science 54, 203211.Google Scholar
Wheeler, D. A. and Isman, M. B. (2001) Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomologia Experimentalis et Applicata 98, 916.Google Scholar
Zhu-Salzman, K., Shade, R. E., Koiwa, H., Salzman, R. A., Narasimhan, M., Bressan, R. A., Hasegawa, P. M. and Murdock, L. L. (1998) Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II. Proceedings of the National Academy of Sciences 95, 1512315128.Google Scholar