Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T17:34:46.394Z Has data issue: false hasContentIssue false

Evolution of host acceptability and suitability in Callosobruchus maculatus (Coleoptera: Bruchidae) developing on an occasional host: importance for pest status prediction

Published online by Cambridge University Press:  15 March 2010

F. Sankara
Affiliation:
Laboratoire d'Entomologie Fondamentale et Appliquée, UFR/SVT, Université de Ouagadougou, 03 BP 7021, Ouagadougou 03, Burkina Faso
L.C.B. Dabiré
Affiliation:
Laboratoire d'Entomologie Agricole de Kamboinsé, Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
S. Dugravot
Affiliation:
UMR 1099 BIO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, INRA/Agro Campus Ouest/Université de Rennes 1, Rennes, France
A.M. Cortesero
Affiliation:
UMR 1099 BIO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, INRA/Agro Campus Ouest/Université de Rennes 1, Rennes, France
A. Sanon*
Affiliation:
Laboratoire d'Entomologie Fondamentale et Appliquée, UFR/SVT, Université de Ouagadougou, 03 BP 7021, Ouagadougou 03, Burkina Faso
*
Get access

Abstract

In West Africa, Callosobruchus maculatus Fabricius mainly develops on cowpea (Vigna unguiculata (L.) Walpers) and sometimes on Bambara groundnut (Vigna subterranea (L.) Verdcourt). A survey on the development of a C. maculatus strain selected on cowpea was undertaken during eight generations on two local varieties of Bambara to determine their level of acceptability and suitability for the pest and its evolution over time and successive generations. When C. maculatus females were in contact with seeds from both Bambara varieties for the first time, they laid fewer eggs on these hosts in comparison with cowpea. However, females that have developed inside Bambara cv. Local Beige seeds deposited more eggs on their hosts of origin from the first generation onwards. The same result was obtained on Bambara cv. Local Striped seeds from the F4 generation onwards. Egg viability was not affected by host variability. On the contrary, the larval survival was significantly reduced on Bambara seeds. Larval survival and intrinsic rates of natural increase were improved on both Bambara varieties with successive generations in comparison to cowpea. Our results demonstrate that in a non-choice situation, C. maculatus is able to develop on both Bambara cv. and even increase its reproduction potential over successive generations, regardless of the climatic variations. The results help to better understand why C. maculatus is becoming a serious concern on Bambara in West Africa where the pest is frequently in contact with this occasional host.

Type
Research Paper
Copyright
Copyright © ICIPE 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, J. H. and Credland, P. F. (2001) Bionomics and polymorphism in Callosobruchus subinnotatus (Coleoptera: Bruchidae). Bulletin of Entomological Research 91, 235244.Google Scholar
Boeke, S. J., van Loon, J. J. A., van Huis, A. and Dicke, M. (2004) Host preference of Callosobruchus maculatus: a comparison of life history characteristics for three strains of beetles on two varieties of cowpea. Journal of Applied Entomology 128, 390396.CrossRefGoogle Scholar
Carrière, Y. (1998) Constraints on the evolution of host choice by phytophagous insects. Oikos 82, 401406.CrossRefGoogle Scholar
Cohen, J. and Cohen, P. (1983) Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd edn. Erlbaum, Hillsdale, NJ.Google Scholar
Cope, J. M. and Fox, C. W. (2003) Oviposition decisions in the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae): effects of seed size on superparasitism. Journal of Stored Products Research 39, 355365.CrossRefGoogle Scholar
Dike, M. C. (1994) An annotated checklist and the identity of major storage insect pests in Nigeria. Samaru Miscellaneous Paper No. 130, pp. 1–17.Google Scholar
Gatehouse, A. M. R., Minney, B. H., Dobie, P. and Hilder, V. (1990) Biochemical resistance to bruchid attack in legume seed; investigation and exploitation, pp. 241256. In Bruchids and Legumes: Economics, Ecology and Co-evolution (edited by Fujii, K., Gatehouse, A. M. R., Johnson, C. D., Mitchel, R. and Yoshida, T.). Kluwer, Dordrecht.CrossRefGoogle Scholar
Giga, D. P. and Smith, R. H. (1983) Comparative life history studies of four Callosobruchus species infesting cowpeas with special reference to Callosobruchus rhodesianus (Pic.) (Coleoptera: Bruchidae). Journal of Stored Products Research 19, 189198.CrossRefGoogle Scholar
Giga, D. P. and Smith, R. H. (1987) Egg production and development of Callosobruchus rhodesianus (Pic.) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) on several commodities at two different temperatures. Journal of Stored Products Research 23, 915.CrossRefGoogle Scholar
Glitho, I. A. (1990) Les Bruchidae ravageurs de Vigna unguiculata (Walp.) en zone guinéenne. Analyse de la diapause reproductrice chez les mâles de Bruchidius atrolineatus (Pic.). Thése de Doctorat, Tours. 100 pp.Google Scholar
Goli, A. E. (1995) Bibliographic review, pp. 410. In Bambara Groundnut, Vigna subterranea (L.) Verdc: Promoting the Conservation and Use of Underutilized and Neglected Crops, 9 (edited by Heller, J. et al. ). Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut (Vigna subterranea (L.) Verdc.). 14–16 November 1995, Harare, Zimbabwe.Google Scholar
Haines, C. P. (1991) Insects and Arachnids of Stored Products: Their Biology and Identification, 2nd edn. Natural Resources Institute, Chatham, Kent. 246 pp.Google Scholar
Howe, R. W. (1953) The rapid determination of the intrinsic rate of increase of an insect population. Annals of Applied Biology 40, 134151.CrossRefGoogle Scholar
Huignard, J. (1985) Importance des pertes dues aux insectes ravageurs des graines: problèmes posés par la conservation des légumineuses alimentaires, source de protéines végétales. Cahiers de la Nutrition et de Dietique 20, 193199.Google Scholar
Janz, N. and Nylin, S. (1997) The role of female search behaviour in determining host plant range in plant feeding insects: a test of information processing hypothesis. Proceedings of the Royal Society of London 264, 701707.CrossRefGoogle Scholar
Johnson, C. and Kistler, R. A. (1987) Nutritional ecology of bruchid beetles, pp. 259276. In Nutritional Ecology of Insects, Mites, Spiders and Related Invertebrates (edited by Slansky, F. Jr and Rodrigues, J. G.). John Wiley, New York.Google Scholar
Lale, N. E. S. and Makoshi, M. S. (2000) Role of chemical characteristics of the seed coat in the resistance of selected cowpea varieties to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in Nigeria. International Journal of Pest Management 46, 97102.Google Scholar
Lale, N. E. S. and Vidal, S. (2001) Intraspecific and interspecific competition in Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic.) on stored bambara groundnut, Vigna subterranea (L.) Verdcourt. Journal of Stored Products Research 37, 329338.CrossRefGoogle ScholarPubMed
Lale, N. E. S. and Vidal, S. (2003) Effect of constant temperature and humidity on oviposition and development of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic.) on bambara groundnut, Vigna subterranea (L.) Verdcourt. Journal of Stored Products Research 39, 459470.CrossRefGoogle Scholar
Mbata, G. N. (1992) Studies on the comparative susceptibility of varieties of bambara groundnuts to infestation by Callosobruchus maculatus. Tropical Science 32, 4751.Google Scholar
Omitogun, O. G., Jackai, L. E. N. and Thottappilly, G. (1999) Isolation of insecticidal lectin-enriched extracts from African yam bean (Sphenostylis stenocarpa) and other legume species. Entomologia Experimentalis et Applicata 90, 301311.Google Scholar
Ouédraogo, P. A. and Huignard, J. (1981) Polymorphism and ecological reaction in Callosobruchus maculatus FAB. in Upper Volta, pp. 175196. In The Ecology of Bruchids Attacking Legumes (Pulses) (edited by Labeyrie, V.). Vol. 19. D. W. Junk Publishers, The Hague.Google Scholar
Ouedraogo, P. A., Sou, S., Sanon, A., Monge, J. P., Huignard, J., Tran, M. D. and Credland, P. F. (1996) Influence of temperature and humidity on populations of Callosobruchus maculatus (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Pteromalidae) in two climatic zones of Burkina Faso. Bulletin of Entomological Research 86, 695702.CrossRefGoogle Scholar
Robert, P. (1984) Contribution à l'étude la bruche de l'arachide: Caryedon serratus (Col.: Bruchidae) sur ses différentes plantes hôtes. Thèse de Doctorat 3è cycle, Université de Tours. 122 pp. .Google Scholar
Sanon, A. and Ouedraogo, A. P. (1998) Etude des variations démographiques de Callosobruchus maculatus (F.) et de ses parasitoides, D. basalis (Rond.) et de Eupelmus vuilleti (Crwf), sur le niébé dans une perspective de lutte biologique. Insect Science and Its Applications 3, 241250.Google Scholar
Sanon, A., Dabiré, L. C. B., Ouedraogo, A. P. and Huignard, J. (2005) Field occurrence of bruchid pests of cowpea and associated parasitoids in a sub humid zone of Burkina Faso: importance on the infestation of two cowpea varieties at harvest. Plant Pathology Journal 4, 1420.Google Scholar
Sanon, A., Ouedraogo, A. P., Tricault, Y., Geland, P. F. and Huignard, J. (1998) Biological control of bruchids in cowpea stores by release of Dinarmus basalis adults. Environmental Entomology 27, 717725.CrossRefGoogle Scholar
Shazali, M. E. H. (1989) The susceptibility of faba bean and other seed legumes to infestation by Bruchidius incarnatus (Boh.) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). FABIS Newsletter 23, 2024.Google Scholar
Simmonds, M. S. J., Blaney, W. M. and Birch, A. N. E. (1989) Legume seeds: the defences of wild and cultivated species of Phaseolus against attack by bruchid beetles. Annals of Botany 63, 177184.CrossRefGoogle Scholar
Singer, M. C. (1986) The definition and measurement of oviposition preference in plant-feeding insects, pp. 6589. In Insect–Plant Interactions (edited by Miller, J. P. and Miller, T. A.). Springer, New York.CrossRefGoogle Scholar
Stanton, W. R., Doughty, T., Orraca-Tetteh, R. and Steele, W. (1966) Grain Legumes in Africa. Food and Agriculture Organization, Rome. 183 pp.Google Scholar
Teixeira, I. R. V. and Zucoloto, F. S. (2003) Seed suitability and oviposition behaviour of wild and selected populations of Zabrotes subfasciatus (Boheman) (Coleoptera: Bruchidae) on different hosts. Journal of Stored Products Research 39, 131140.CrossRefGoogle Scholar
Tuda, M., Choub, L.-Y., Niyomdham, C., Buranapanichpan, S. and Tateishi, Y. (2005) Ecological factors associated with pest status in Callosobruchus (Coleoptera: Bruchidae): high host specificity of non-pests to Cajaninae (Fabaceae). Journal of Stored Products Research 41, 3145.CrossRefGoogle Scholar
Tuda, M., Rönn, J., Buranapanichpan, S., Wasano, N. and Arnqvist, G. (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with stored-product pest status. Molecular Ecology 15, 35413551.CrossRefGoogle ScholarPubMed
Wasserman, S. S. and Futuyma, D. J. (1981) Evolution of host plant utilization in laboratory populations of the southern cowpea weevil, Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae). Evolution 35, 605617.CrossRefGoogle ScholarPubMed