Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T04:12:15.478Z Has data issue: false hasContentIssue false

Preliminary chemical analyses of the repellent secretion of the African variegated grasshopper Zonocerus variegatus

Published online by Cambridge University Press:  19 September 2011

A. B. Idowu
Affiliation:
Department of Biological Sciences, University of Agriculture, Abeokuta, Nigeria
W. W. D. Modder
Affiliation:
Department of Zoology, University of Ibadan, Ibadan, Nigeria
Get access

Abstract

The chemical nature of the repellent secretion of the African grasshopper, Zonocerus variegatus (Orthoptera: Pyrgomorphidae) reared on Acalypha wilkesiana L. and Manihot esculenta (Crantz) was analysed. It was found to contain alkaloids, glucose, proteins, free amino acids, trypsin-like proteinase, carbohydrases, lipase and the ions Ca2+, Mg2+ and K+ but not Na+ and (PO4)2-. Alkaloids were present in the secretion whether or not the insect was fed on plants containing alkaloids. Cyanide ions were absent in the secretion, even when Z. variegatus was fed exclusively on the cyanogenic Manihot esculenta. The amino acid and glucose contents were the same in grasshoppers reared on different plants. The protein content in the repellent secretion was constant, despite the fluctuations observed in the protein content of the haemolymph.

Résumé

La sécrétion repulsive du criquet puant Zonocerus variegatus (Orthoptera: Pyrgomorphidae) élevé sur Acalypha wilkesiana L. et Manihot esculenta (Crantz) a été analysée pour en déterminer la nature chimique. On a trouvé que cette sécrétion contient des alcaloïdes, du glucose, des protéines, des acides aminés libres, une protease proche de la trypsine, des carbonohydrases, de la lipase ainsi que des ions Ca2+, Mg2+ et K+}; mais pas d'ions N+ et (PO4)2-. Les alcaloïdes étaient présents indépendamment que le criquet était nourri sur des plantes avec ou sans alcaloïdes. La sécrétion ne contenait pas d'ions de cyanide, quand bien même Z. variegatus était exclusivement nourri sur M. esculenta qui est une plante cyanogène. Les acides aminés et le glucose sont restés les mêmes chez les criquets élevés sur des plantes différentes. Dans la sécrétion répulsive, les protéines étaient constantes malgré leurs fluctuations quantitatives enregistrées dans l'hémolymphe.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, R. P. and Shelley, W. B. (1955) The role of proteolytic enzymes in the production of pruritus in man. J. Invest. Dermal. 25, 341346.CrossRefGoogle ScholarPubMed
Baldwin, E. and Bell, D. J. (1955) Cole's Practical Physiological Chemisty 10th Edn. Cambridge, Great Britain.Google Scholar
Bernays, E. A., Edgar, J. A. and Rothschild, M. (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopper, Zonocems variegatus. J. Zool 182, 8587.CrossRefGoogle Scholar
Blum, M. S. (1981) Chemical Defenses of Arthropods. Academic Press, New York. 562 pp.Google Scholar
Blum, M. S. (1987) Biosynthesis cpf arthropod exocrine compounds. Annu. Rev. Entomol. 32, 381413.CrossRefGoogle Scholar
Bradford, M. (1976) A rapid and sensitive method for the quantitation of mico-organism quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem 72, 248252.CrossRefGoogle Scholar
Craig, R. C. and Stitzel, R. E. (1986) Modern Pharmacology 2nd Edition. Little, Brown and Company. Boston/Toronto. 111 pp.Google Scholar
Dawson, M. C., Elliott, D. C., Elliot, W. H. and Jones, K. M. (1986) Data for Biochemical Research 3rd Edn. Clarendon Press, Oxford. 1068 pp.Google Scholar
Fishelson, L. (1960) The biology and the behaviour of Poekilocerus bufonis (Klug), with special reference to the repellent gland (Arth. Acricliae). Eos. Madr. 36, 4162.Google Scholar
Gordon, R. and Bailey, C. A. (1976) Free amino acids, ions osmotic pressure of the haemolymph of three species of black flies. Can. J. Zool. 54, 399404.CrossRefGoogle Scholar
Halkier, B. A., Schelelr, H. V. and Moller, B.L. (1988) Cyanogenic glucoside: The biosynthetic pathway and the enzyme involved, pp. 4967. In Cyanide Compounds in Biology. John-Wiley Science publication. Wiley, Chichester.Google Scholar
Harborne, J. B. (1988) Introduction to Ecological Biochemistry. Academic Press, New York. 356 pp.Google Scholar
House, C. R. and Ginsborg, B. L. (1985) Salivary gland, pp. 195224. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 11 (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, Oxford.Google Scholar
Idowu, A. B. (1994) Structural and physiological studies on the repellent gland of the African pest grasshopper, Zonocems variegatus (Orthoptera: Pyrgomorphidae). PhD Thesis. University of Ibadan, Nigeria. 212 pp.Google Scholar
Idowu, A. B. (1995) Structure of the repellent gland of Zonocems variegatus. Journal of African Zoology 109, 247252.Google Scholar
Idowu, A. B. (1996) The growth pattern of the repellent gland of Zonocems variegatus. Bioscience Research Communication 8, 16.Google Scholar
Jibir, J. J. (1991) Haemocytes and haemolymph characteristics in the African pest grasshopper, Zonocerus variegatus (L) (Acridoidae: Pyrgomorphidae). MSc Thesis. University of Ibadan, 61 pp.Google Scholar
Lacks, S. A. and Springhorn, S. S. (1980) Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Bio. Chem. 155, 74677473.Google Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assemblage of the head of bacteriophage T4. Nature Lond. 227, 680685.CrossRefGoogle Scholar
Modder, W. W. D. (1984) The attraction of Zonocerus variegatus (L) (Orthoptera: Pyrgomorphidae) to the weed Chromolaena odorata and associated feeding behaviour. Bull. Entomol. Res. 74, 239247.CrossRefGoogle Scholar
Nashrstedt, A. (1988) Cyanogenens and the role of cyanogenic compound in insects, pp. 131150. In Cyanide Compounds in Biology. (Ciba Foundation Symposium 140). Wiley-Interscience. Wiley, Chichester.Google Scholar
Owen, M. D. and Bridges, A. R. (1976) Aging in the venom glands of queen and worker honey bees Apis mellifera (L). Some morphological and chemical observations. Toxicon 14, 15.CrossRefGoogle ScholarPubMed
Pasteels, J. M., Gregoire, J. C. and Rowell-Rahier, M. (1983) The chemical ecology of defense in arthropods. Annu. Rev. Entomol. 28, 263289.CrossRefGoogle Scholar
Rothschild, M., Rowan, M. G. and Fairbaim, J. M. (1977) Storage of cannabinoids by Arctia caja and Zonocerus variegatus fed on chemically distinct strains of Cannabis sativa. Nature 266, 650651.CrossRefGoogle Scholar
Rothschild, M., Aplis, R. R., Cockrum, P. A., Edger, T. A., Fair, Weather P. and Lee, R. (1979) Pyrolizidine alkaloids in archid moths (Lep) with discussions on host plant relationships and the role of these secondary plant substances in the Archidae. Biol. J. Lon. Soc. 12, 305326.CrossRefGoogle Scholar
Sadik, S., Okereke, O. U. and Kahn, S. K. (1974) Screening of acyanogenes in cassava. UTA Ircli. Bull. No. 4. 4 pp.Google Scholar
Schmidt, J. O. (1982) Biochemistry of insect venoms. Annu. Rev. Ent. 27, 339368.CrossRefGoogle ScholarPubMed
Tursch, B., Braekman, J. C. and Daloze, D. (1976) Arthropod alkaloids. Experientia 32, 401407.CrossRefGoogle Scholar
Whitman, D. W. (1990) Grasshopper chemical communication, pp. 357391. In Biology of Grasshoppers (Edited by Chapman, R. and Joern, A.). John Wiley, New York.Google Scholar
Wigglesworth, V. B. (1982) The Principles of Insect Physiology 7th Edn.Chapman and Hall Ltd. New York. 827 pp.Google Scholar
Ziprkowsi, L. and Rolant, F. (1966) Study of the toxins from the poison hairs of Traumetapoca wilkinsoni caterpillars. J. Invert. Dermal. 46, 439445.Google Scholar