Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T17:40:30.324Z Has data issue: false hasContentIssue false

Biological Effects of Four Plant Extracts on Culex quinquefasciatus Say Larval Stages

Published online by Cambridge University Press:  19 September 2011

J. Muthukrishnan*
Affiliation:
School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
E. Pushpalatha
Affiliation:
School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
A. Kasthuribhai
Affiliation:
School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
*
Corresponding author: JM. Email: muthu@pronet.xlweb.com
Get access

Abstract

Acute toxicity tests were conducted to determine the biological effects of partially purified extracts of four different plants on the juveniles of Culex quinquefasciatus. The active ethyl acetate extract of Solarium suratense leaf produced a 24h LC50 of between 23.53 ppm for the second instars and 46.04 ppm for the third instars. This was followed by the defatted methanol fraction of Abrus precatorius seed coat extract with the LC50 values ranging from 59.82 ppm for the second instar to 77.34 ppm for the third instar. The petroleum ether fraction of Solatium trilobatum and the ethyl acetate fraction of Lencas aspera were less toxic to the larvae. The active fractions of the plant extracts disrupted moulting and metamorphosis, induced malformation, extended the larval duration and inhibited adult emergence. At concentrations of less than 37.64 ppm, they inhibited emergence of 50% of the larvae. The insecticidal activity of these extracts persisted for up to four days.

Résumé

Des testes de toxicité aïgue ont été menés sur des larves de Culex quinquefasciatus, afin de déterminer les effets biologiques des extraits partiellement purifiés de quatre plantes différentes. A la concentration de 23,53 ppm et de 46,04 ppm, l'extrait actif à l'acétate d'éthyle obtenu des feuilles de Solanum suratense a respectivement provoqué, en 24 heures, une action létale (DL50), chez les larves du deuxième et troisième stade. Son pouvoir d'action fut suivi par la fraction au methanol dégraissée obtenue du tégument des graines de Abrus precatorius avec des valeurs DL50 de 59,82 ppm pour le deuxième stade, et de 77,43 pour le troisième stade de développement larvaire. La fraction d'extraits à l'ether de pétrole de Solanum tribolatum et celle à l'acétate d'éthyle de Leucas aspera étaient moins toxiques pour les larves. Les fractions actives des extraits perturbaient la mue et la métamorphose. Ainsi elles provoquaient la malformation et allongeaient la durée de développement larvaire, et réduisaient aussi le taux d'émergence des adultes. Ces extraits gardaient leur pouvoir insecticide jusqu'à quatre jours.

Type
Research Articles
Copyright
Copyright © ICIPE 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1925) A method for computing the effectiveness of an insecticide, J. Econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Alkofahi, A., Rupprecht, J. K., Anderson, J. E., McLaughlin, J. L., Mikolajczak, K. L. and Scott, B. A. (1989) Search for new pesticides from higher plants, pp. 2443. In Insecticides of Plant Origin (Edited by Arnason, J. T., Phylogene, B. J. R. and Morand, P.). American Chemical Society, Washington.Google Scholar
Al-Sharook, Z., Balan, K., Giang, Y. and Rembold, H. (1991) Insect growth inhibitors from two tropical meliaceae: Effect of crude seed extracts on mosquito larvae, J. Appl. Ent. 111, 425430.CrossRefGoogle Scholar
Baktharatchagan, R., Rita, C. and Jebanesan, A. (1993) Laboratory evaluation of two insect growth regulators against some vector mosquitoes. J. Insect Sci. 6, 276278.Google Scholar
Berenbaum, M. R. (1989) North American botanicals as sources of novel plant based insecticides, pp. 1124. In Insecticides of Plant Origin (Edited by Arnason, J. T., Phylogene, B. J. R. and Morand, P.). American Chemical Society, Washington.CrossRefGoogle Scholar
Chopra, R. (1928) Annual Report of the entomologist to the Government of Punjab, 1925–1926, Department of Agriculture, Punjab, pp. 67125.Google Scholar
Finney, D. G. (1971) Probit Analysis, 3rd edition. Cambridge University Press, Cambridge, 245 pp.Google Scholar
Grainge, M. and Ahmed, H. (1988) Handbook of Plants and Pest Control Properties. John Wiley and Sons, New York, 470 pp.Google Scholar
Jacobson, M. (1989) Botanical pesticides, pp. 1–10. In Insecticides of Plant Origin (Edited by Arnason, J. T., Phylogene, B. J. R. and Morand, P.). American Chemical Society, Washington.Google Scholar
Jacobson, M. and Crosby, B. G. (1971) Naturally Occurring Insecticides. NY Marcel Dekker Inc. USA, 210 pp.Google Scholar
Madrigal, R. E., Knapp, F. E., Sigafes, R. and Smith, C. R. Jr (1979) Fractionation of extracts of Lithospermum arvense L. and their activity against mosquito larvae. Mosquito News 39, 536540.Google Scholar
Mohsen, Z. H., Jawad, A. M., Al-Saadi, M. and Al-Naib, A. (1995) Anti-oviposition and insecticidal activity of Imperata cylindrica (Graminae). Med. Vet. Entomol. 9, 441442.CrossRefGoogle Scholar
Pushpalatha, E. and Muthukrishnan, J. (1995) Larvicidal activity of a few plant extracts against Culex quinquefasciatus and Anopheles stephensi. Indian J. Malarial. 32, 1423.Google ScholarPubMed
Rao, R. D., Reuben, R., Gitanjali, Y. and Srimannarayana, G. (1988) Evaluation of four azadirachtin rich fractions from neem, Azadirachta indica A. Juss (Family: Meliaceae) as mosquito larvicides. Indian J. Entomol. 25, 6772.Google ScholarPubMed
Saxena, A. and Saxena, R. C. (1991) A new plant extract to suppress the population of malaria vector Anopheles culicifacies. Geobios New Reports 10, 154156.Google Scholar
Saxena, A. and Saxena, R. C. (1992) Effect of Ageratum conyzoids extract on the developmental stages of malaria vector Anopheles stephensi (Diptera: Culicidae). J. Environ. Biol. 13, 207209.Google Scholar
Zebitz, C. P. W. (1984) Effect of some crude and azadirachtin-enriched neem (Azadirachta indica) seed kernel extracts on larvae of Aedes aegypti. Entomol. Exp. Appl. 35, 1116.CrossRefGoogle Scholar
Zebitz, C. P. W. (1986) Effects of three different neem kernel extracts and azadirachtin on larvae of different mosquito species, J. Appl. Entomol. 102, 455463.CrossRefGoogle Scholar