Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-16T14:47:22.705Z Has data issue: false hasContentIssue false

Preliminary studies on egg-mass development in the Simulium damnosum Theobald complex (Diptera: Simuliidae)

Published online by Cambridge University Press:  19 September 2011

C. A. Kyorku
Affiliation:
Department of Zoology, University of Ghana, Legon, Accra, Ghana
J. N. Raybould
Affiliation:
WHO Onchocerciasis Control Programme, c/o Public Health Laboratory, Volta River Authority, Akosombo, Ghana
Get access

Abstract

Egg-masses of Simulium damnosum s.l. were investigated to explain the frequent presence of undeveloped eggs in the lower layers. Natural development within egg-masses depended on whether eggs were laid (a) all at once or (b) were added to on consecutive evenings. In the field where the development of eggs from situation (a) was followed, top layer (TL) eggs hatched in 2 days when unexposed bottom layer (BL) eggs were still white. BL eggs uncovered 12 hr after oviposition were undeveloped, then hatched in 3 days. BL (a) eggs uncovered after 5 days were still untanned and undeveloped but were not further investigated.

In the laboratory, portions of egg-masses—intact or with the BLs exposed—were incubated in Petri dishes with and without preceding KOH egg separation treatment, or in flowing water. Other samples of BL eggs were incubated at different O2 levels. In Petri dishes, most TL eggs hatched within 24 hr of setting up but exposed BL eggs hatched (if at all) after much delay in 6–14 days. No unexposed BL eggs hatched even after TLs above them had done so. Transfer to flowing water or KOH treatment increased hatching and reduced the delay. Hatch rates of exposed BL eggs rose from 2.7 to 63% with increased O2 levels.

Implications with regard to laboratory culture and control operations are discussed. Mortality of covered eggs could be a potent population regulating factor within and perhaps even between species of the S. damnosum complex.

Résumé

On a fait des recherches sur les masses d'oeufs du Simulium damnosum afin de trouver une explication à la présence fréquente d'oeufs non développés dans les couches inférieures. Le développement naturel au sein des masses d'oeufs dépendait du fait que les oeufs étaient pondus (a) tous d'un coup ou (b) au cours de plusieurs soirs. Dans l'étude de la situation (a), les couches supérieures (CS) ont vu leurs oeufs éclore en 2 jours, alors que les oeufs non exposés de la couche inférieure (CI) étaient encore blancs. Les oeufs de la CI découverts 12 heures après l'oviposition n'étaient pas développés, puis faisaient éclosion en 3 jours. Les oeufs de la CI (a) découverts au bout de 5 jours étaient encore sans couleur mais on n'a pas poussé les recherches plus avant.

Dans le laboratoire, des portions de masses d'oeufs—intactes ou bien dont les CI avaient été exposées—ont été incubées dans des récipients in petri avec ou sans traitement préalable de séparation KOH de l'oeuf, ou dans de l'eau courante. D'autres échantillons d'oeufs de la CI ont été incubés à différents niveaux d'O2. Les récipients in petri ont vu éclore la plupart des oeufs des CS dans les 24 heures mais les oeufs des CI, exposés, n'ont fait éclosion (lorsqu'ils l'ont fait) qu'après un retard de 6 à 14 jours. Aucun oeuf non exposé des CI n'a fait éclosion, même à la suite de l'éclosion des oeufs des CS au-dessus d'eux. Le transfert à de l'eau courante ou au traitement KOH a augmenté l'éclosion et diminué le retard. Les taux d'éclosion des oeufs exposés des CI est passé de 2,7 à 63% avec une augmentation des niveaux d'O2.

On discute des conséquences en ce qui concerne les opérations de culture et de contrôle en laboratoire. La mortalité des oeufs couverts devrait être un facteur de régulation de la population au sein de et même peut-être entre les espèces du complexe S. damnosum.

Type
Research Articles
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balay, G. (1964) Observations sur l–oviposition de Simulium damnosum Theobald et Simulium adersi Pomeroy (Diptera: Simuliidae) dans l'est de la Haute-Volta. Bull. Soc. Path. exot. 57, 588611.Google Scholar
Colbo, M. H. (1974) Studies on the biology of the Simuliidae in north-eastern Australia, with reference to their potential as vectors of pathogens. Ph.D. thesis Australia. Univ. of Queensland. (Cited by Mokry et al, 1981).Google Scholar
Colbo, M. H. and Wotton, R. S. (1981) Preimaginal blackfly bionomics. In Blackflies: The future for biological methods in integrated control. (Edited by Laird, M.), pp. 209226. Academic Press (London) Ltd.Google Scholar
Crisp, G. (1956) Simulium and onchocerciasis in the Northern Territories of the Gold Coast. London: H. K. Lewis & Co., 176 pp.Google Scholar
Davies, J. B. (1962) Egg-laying habits of Simulium damnosum Theobald and Simulium medusaeforme form hargrevesi (sic) Gibbins in Northern Nigeria. Nature, Lond. 196, 149150.Google Scholar
Elsen, P. and Hébrard, G. (1977) Methodes d'echantillonage des populations preimaginales de Simulium damnosum Theobald, 1903 (Diptera: Simuliidae) en Afrique de l'Ouest. II. Observations sur le choix des coleurs, l'evolution du peuplement et la reparation horizontale au moyen de rubans en plastique. Tropenmed. Parasit. 28, 471477.Google Scholar
Fredeen, F. J. H. (1959) Collection, extraction, sterilization and low-temperature storage of blackfly eggs (Diptera: Simuliidae). Can. Ent. 91, 450453.Google Scholar
Gambrell, F. L. (1933) The embryology of the blackfly Simulium pictipes Hagan. Ann. ent. Soc. Am. 26, 641671.CrossRefGoogle Scholar
Imhof, J. E. and Smith, S. M. (1979) Oviposition behaviour, egg-masses and hatching response of the eggs of five Nearctic species of Simulium (Diptera: Simuliidae). Bull, ent. Res. 69, 405425.Google Scholar
Ivashchenko, L. A. (1977) The effect of oxygen and light on embryonic development and time of hatching of simuliid larvae (Diptera: Simuliidae). Medskaya Parazit. 46, 3741. “In Russian”.Google Scholar
Kyorku, C. A. (1982) Studies on the egg stage of some common Ghanaian Simuliidae (Diptera: Nematocera) with particular reference to onchocerciasis vectors. M. Sc. thesis, University of Ghana, Legon.Google Scholar
Marr, J. D. M. (1962) The use of an artificial breeding site and cage in the study of Simulium damnosum Theobald. Bull. Wld. Hlth. Org. 27, 622629.Google Scholar
Mokry, J. E., Colbo, M. H. and Thompson, B. H. (1981) Laboratory colonization of blackflies. In Blackflies: The future for biological methods in integrated control. (Edited by Laird, M.), pp. 299306. Academic Press (London) Ltd.Google Scholar
Muirhead-Thomson, R. C. (1956) Communal oviposition in Simulium damnosum Theobald (Diptera: Simuliidae). Nature, Lond. 178, 12971299.CrossRefGoogle Scholar
Raybould, J. N., Barro, T., Sawadogo, R. and Mordzifa, F. (1982) A new simple technique for rearing F1 progeny from single females of Simulium damnosum Theobald complex. Tropenmed. parasit. 33, 8793.Google Scholar
Walsh, J. F. (1984) Aspects of the biology and control of Simulium damnosum s.l. (Diptera: Simuliidae) in West Africa. Ph. D. Thesis, University of Salford.Google Scholar