Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T23:30:47.687Z Has data issue: false hasContentIssue false

Response of Two Growth Stages of Pepper to Different Population Densities of the Spiralling Whitefly, Aleurodicus Dispersus Russell

Published online by Cambridge University Press:  19 September 2011

Olufemi O. R. Pitan*
Affiliation:
National Horticultural Research Institute (NIHORT), Ibadan, Nigeria E-mail: femipitan@yahoo.com
*
Current address: Department of Crop Production and Crop Protection, University of Agriculture, Abeokuta, Ogun State, Nigeria.
Get access

Abstract

The effect of artificial infestation of the spiralling whitefly, Aleurodicus dispersus Russell at 0, 1, 2, 3, 4 and 5 pairs on caged potted pepper (Capsicum spp.) plants at 2 weeks after planting (WAP), representing the nursery stage, and 6 WAP, representing the field stage, was studied in a screen house. Increasing insect density resulted in a corresponding increase in damage to the leaves, measured as leaf drop. Yield reduction was inversely proportional to the whitefly population, with highly significant correlation coefficients. For instance, yield reductions were 8.8 and 36.5% with 1 and 5 pairs of adult whitefly respectively at 2 WAP, and 7.5 and 32.1% with 1 and 5 pairs respectively at 6 WAP. The chlorophyll, sugar, ash, protein and crude fibre contents of the leaves decreased with increases in level of infestation, although infestation had no significant effect on the nutrient contents of the fruits. The significant impact of A dispersus on vegetative growth, yields and chemical contents of leaves confirm it as an economic pest of pepper in Nigeria.

Résumé

L'effet de l'infestation artificielle de plants de piment (Capsicum spp.) par la mouche blanche (Aleurodicus dispersus Russel) a été étudié en serre. L'expérimentation a été réalisée sur des plantes en pot, âgées de 2 et 6 semaines représentatives du stade pépinière et du stade de plein champ, placées dans des cages, et, infestées avec 0, 1, 2, 3, 4 ou 5 couples d'aleurodes. L'augmentation de la densité des insectes correspond à l'augmentation des dégâts sur feuilles qui est déterminée par les feuilles qui tombent. La baisse de rendement est inversement proportionnelle à la population de la mouche blanche, avec des coefficients de corrélation très significatifs. Ainsi, les baisses de rendement sont respectivement de 8,8 et 36,5% pour 1 et 5 paires de mouches blanches adultes après deux semaines de plantation, alors que la baisse de rendement est respectivement de 7,5 et 32,1% pour 1 et 5 paires de mouches blanches adultes après 6 semaines. La quantité de chlorophylle, de sucre, de cendre, de protéine et de fibre brute des feuilles diminuent avec l'augmentation du niveau d'infestation, même si l'infestation n'a pas eu d'effet significatif sur les nutriments des fruits. L'impact significatif d' A. dispersus sur la croissance végétative, les rendements et la composition chimique des feuilles confirme que l'aleurode est un ravageur important du piment au Nigeria.

Type
Research Article
Copyright
Copyright © ICIPE 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akinlosotu, T. A. (1977) A checklist of insects associated with local vegetables in southwestern Nigeria. Inst. Agrie. Res. Tra. Bull., No 8, 18 pp.Google Scholar
Akinlosotu, T. A., Jackai, L. E. N., Ntonifor, N. N., Hassan, A. T., Agyakwa, C. W., Odebiyi, J. A., Akingbohungbe, A. E. and Rossell, H. W. (1993) Spiralling whitefly, Aleurodicus dispersus, in Nigeria. FAO Plant Prot. Bull. 41, 127129.Google Scholar
Arnon, D. I. (1949) Copper enzymes in isolating chloroplasts polyphenol oxidases in Beta vulgáris Plant Physiol. 24, 115.CrossRefGoogle Scholar
Association of Official Analytical Chemists (AOAC) (1990) Official Methods of Analysis. 11th Edition, Washington DC, 250 pp.Google Scholar
Ayanru, D. K. G. and Sharma, V. C. (1983) Chlorophyll depletion in leaves of field-grown cassava clones infested by cassava green spider mite, Mononychellus tanajoa (Bondar) (Acarina: Tetranychidae). Trop. Agric. 60, 8588.Google Scholar
M'Boob, S. S. and Van Oers, C. C. C. C. (1994) Spiralling whitefly (Aleurodicus dispersus): A new problem in Africa. FAO Plant Prot. Bull. 42, 5962.Google Scholar
Mound, L.A. and Halsey, S.M. (1978) Whitefly of the World: A Systematic Catalogue of the Aleyrodidae, Homoptera with Host Plant and Natural Enemy Data. John Wiley and Sons, London. 340 pp.Google Scholar
Neuenschwander, P. (1994) Spiralling whitefly, Aleurodicus dispersus. A recent invader and new cassava pest. African Crop Sci. J. 2, 419421.Google Scholar
Pedigo, L. P., Hutchins, S. H. and Higley, L. G. (1986) Economic injury levels in theory and practice. Annu. Rev. Entomol. 31, 341368.CrossRefGoogle Scholar
Purseglove, J. W., Brown, E. G., Green, C. L. and Robbins, S. R. J. (1991) Tropical Agriculture Series: Spices Vol. 1, Longman group Ltd. 439 pp.Google Scholar
Raymon, A. T. (1989) Vegetable Seed Production. Longman Group. 318 pp.Google Scholar
Weems, H. V. Jr (1971) Aleurodicus dispersus Russell (Homoptera: Aleyrodidae), a possible vector of lethal yellowing disease in coconut palms. Entomology Circular III, 2 pp. Bureau of Entomology. Division of Plant Industry, Florida Department of Agriculture, Gainesville, Florida.Google Scholar