Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T21:52:55.409Z Has data issue: false hasContentIssue false

Tolerance and recovery resistance of grain sorghum genotypes artificially infested with Busseola fusca (Fuller) (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  19 September 2011

J. Van Den Berg
Affiliation:
Summer Grain Centre, Private Bag X1251, Potchefstroom, 2520, Republic of South Africa
W. G. Wenzel
Affiliation:
Summer Grain Centre, Private Bag X1251, Potchefstroom, 2520, Republic of South Africa
M. C. Van Der Westhuizen
Affiliation:
Department of Zoology and Entomology, University of Orange Free State, Bloemfontein, 9300, Republic of South Africa
Get access

Abstract

Sixty artificially infested grain sorghum genotypes were evaluated for resistance against Busseola fusca. Evaluation of leaf feeding damage indicated levels of resistance ranging from intermediate to susceptible. Genotypes were categorized according to the presence or absence of both antibiotic and tolerant characteristics. Genotypes (17%) exhibited both antibiosis against leaf feeding and tolerance for borer damage. Borer damage resulted in a 4% increase in grain yield of one genotype and a 50% increase in the number of heads of a second genotype. Tolerance and recovery resistance were the most important factors limiting yield loss in grain sorghum genotypes. In this study, the ability of sorghum for tillering (recovery resistance) was separated from the ability to produce heads on infested stems (tolerance). The importance of distinguishing between tolerance and recovery resistance in the evaluation of sorghum germplasm for borer resistance is emphasized.

Résumé

Soixtante genotypes de graine do sorgho, infestés articiellement ont éte évalués pour leur résistance aux Busseola fusca. L'evaluation de dégâts dans l'alimentation des feuilles a révelé des niveaux de résistance allant d'intermédiaire à susceptible. Des génotypes ont été classés d'aprés la présence ou l'absence de traits caractéristiques d'antibiotiques et de tolérance. Dix-sept pour cent des génotypes ont montré de l'antibiose centre l'alimentation des feuilles ainsi que la tolérance aux dégâts causées par des perçeurs. Ces dégâts s'élèvent à une augmentation de 4% dans la production de graines d'un genotype, et de 50% dans la guantité d'epis d'un deuxième genotype.

La tolérance et la résistance de rétablissement ont été les facteurs les plus importants qui limitentent la perte de production de génotypes de graine de sorgho. Dans cette recherche, la capacité de sorgho pour le tillage (résistance de rétablissement) a éte séparée de la capacité de production d'epis sur des tiges infestées (toléerance). L'importance de distinguer entre la tolérance et la résistance de rétablissement dans le cas de l'évaluation de plasme germinal de sorgho pour la résistance aux perceurs a été accentuée.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, B. L., Taneja, S. L., House, L. R. and Leuscner, K. (1990) Breeding for resistance to Chilo partellus Swinhoe in sorghum. Insect Sci. Applic. 11, 671682.Google Scholar
Barry, B. D. (1980) Where are we, and where are we going with insect resistance in grain sorghum? Afr. J. Plant Protection 2, 149159.Google Scholar
Grebrekidan, B. (1985) Breeding sorghum for resistance to insects in eastern Africa. Insect Sci. Applic. 6, 351357.Google Scholar
Horber, E. (1980) Typex s and classification of resistance. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 1521. Wiley-Interscience Publication, New York.Google Scholar
Mihm, J. A. (1983) Efficient Mass Rearing and Infestation Techniques to Screen for Host Plant Resistance to Maize Stem Borers, Diatraea sp., International Maize and Wheat Improvement Centre, El Batan, Mexico.Google Scholar
Ortega, A., Vasal, S. K., Mihm, J. and Hershey, C. (1980) Breeding for insect resistance in maize. In Breeding Plants Resistant to Insects (Edited by Maxwell, F. G. and Jennings, P. R.), pp. 371419. Wiley-Interscience Publication, New York.Google Scholar
Pathak, R. S. (1985) Genetic variation of stem-borer resistance and tolerance in three sorghum crosses. Insect Sci. Applic. 6, 359364.Google Scholar
Pathak, R. S. (1990) Genetics of sorghum, maize, rice and sugarcane resistance to the cereal stem borer, Chilo spp. Insect Sci. Applic. 11, 689699.Google Scholar
Seshu Reddy, K. V. (1985) Relative susceptibility and resistance of some sorghum lines to stem-borers in western Kenya. Insect Sci. Applic. 6, 401404.Google Scholar
Singh, B. U. and Rana, B. S. (1989) Mini Review: Varietal resistance to spotted stem borer, Chilo partellus (Swinhoe). Insect Sci. Applic. 10, 327.Google Scholar
Singh, B. U., Rana, B. S., Reddy, B. B. and Rao, N. G. P. (1983) Host plant resistance to stalk-borer, Chilo partellus Swin., in sorghum. Insect Sci. Applic. 4, 407413.Google Scholar
Starks, K. J. and Dogget, H. (1970) Resistance to a spotted stem borer in sorghum and maize. J. econ. Entomol. 63, 17901795.CrossRefGoogle Scholar
Van den Berg, J., Van Rensburg, J. B. J. and Pringle, K. L. (1990) Damage caused by Chilo partellus (Swinhoe) (Lepidoptera Pyralidae) to various cultivars of grain sorghum, Sorghum bicolor (L.) Moench. S. Afr. J. Plant Soil 7, 192196.CrossRefGoogle Scholar
Van Rensburg, J. B. J. and Van den Berg, J. (1992) Stem borers in grain sorghum: II. Yield loss compensation in relation to borer attack. S. Afr. J. Plant Soil 9, 8186.CrossRefGoogle Scholar
Van Rensburg, J. B. J. and Van Rensburg, G. D. J. (1993) Laboratory production of Busseola fusca (Lepidoptera: Noctuidae) and techniques for the detection of resistance in maize plants. J. Ent. Soc. Sth. Afr. 1, 2528.Google Scholar