Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-31T04:45:26.630Z Has data issue: false hasContentIssue false

Early prediction of mastery of a computerized functional skills training program in participants with mild cognitive impairment

Published online by Cambridge University Press:  21 February 2024

Philip D. Harvey*
Affiliation:
University of Miami Miller School of Medicine, Miami, FL, USA I-Function, Inc, Miami, FL, USA
Courtney Dowell-Esquivel
Affiliation:
University of Miami Miller School of Medicine, Miami, FL, USA
Justin E. Macchiarelli
Affiliation:
University of Miami, Coral Gables, FL, USA
Alejandro Martinez
Affiliation:
University of Miami Miller School of Medicine, Miami, FL, USA
Peter Kallestrup
Affiliation:
I-Function, Inc, Miami, FL, USA
Sara J. Czaja
Affiliation:
I-Function, Inc, Miami, FL, USA Weill-Cornell Medical Center, New York, NY, USA
*
Correspondence should be addressed to: P. D. Harvey, Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, 1120 NW14th Street, Suite 1450, Miami, FL 33136, USA. E-mail: pharvey@miami.edu

Abstract

Background:

Cognition in MCI has responded poorly to pharmacological interventions, leading to use of computerized training. Combining computerized cognitive training (CCT) and functional skills training software (FUNSAT) produced improvements in 6 functional skills in MCI, with effect sizes >0.75. However, 4% of HC and 35% of MCI participants failed to master all 6 tasks. We address early identification of characteristics that identify participants who do not graduate, to improve later interventions.

Methods:

NC participants (n = 72) received FUNSAT and MCI (n = 92) participants received FUNSAT alone or combined FUNSAT and CCT on a fully remote basis. Participants trained twice a week for up to 12 weeks. Participants “graduated” each task when they made one or fewer errors on all 3–6 subtasks per task. Tasks were no longer trained after graduation.

Results:

Between-group comparisons of graduation status on baseline completion time and errors found that failure to graduate was associated with more baseline errors on all tasks but no longer completion times. A discriminant analysis found that errors on the first task (Ticket purchase) uniquely separated the groups, F = 41.40, p < .001, correctly classifying 94% of graduators. An ROC analysis found an AUC of .83. MOCA scores did not increase classification accuracy.

Conclusions:

More baseline errors, but not completion times, predicted failure to master all FUNSAT tasks. Accuracy of identification of eventual mastery was exceptional. Detection of risk to fail to master training tasks is possible in the first 15 minutes of the baseline assessment. This information can guide future enhancements of computerized training.

Type
Original Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Psychogeriatric Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 270279. https://doi.org/10.1016/j.jalz.2011.03.008 CrossRefGoogle ScholarPubMed
Atkins, A. S., Tseng, T., Vaughan, A., Twamley, E. W., Harvey, P., Patterson, T., Narasimhan, M., & Keefe, R. S. E. (2017). Validation of the tablet-administered brief assessment of cognition (BAC app). Schizophrenia Research, 181, 100106. https://doi.org/10.1016/j.schres.2016.10.010 CrossRefGoogle ScholarPubMed
Bai, W., Chen, P., Cai, H., Zhang, Q., Cheung, T., Jackson, T., Sha, S., Xiang, Y.-T., & Su, Z. (2022). Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age andAageing, 51(8), afac173. https://doi.org/10.1093/ageing/afac173 Google Scholar
Beach, S. R., Czaja, S. J., & Schulz, R. (2023). Novel methods for assessment of vulnerability to financial exploitation (FE). Journal of Elder Abuse and Neglect, 35(4-5), 123. https://doi.org/10.1080/08946566.2023.2281672 CrossRefGoogle ScholarPubMed
Best, M. W., Romanowska, S., Zhou, Y., Wang, L., Leibovitz, T., Onno, K. A., Jagtap, S., & Bowie, C. R. (2023). Efficacy of remotely delivered evidence-based psychosocial treatments for schizophrenia-spectrum disorders: A series of systematic reviews and meta-analyses. Schizophrenia Bulletin, 49(4):973986. doi: 10.1093/schbul/sbac209.CrossRefGoogle ScholarPubMed
Bowie, C. R., Bell, M. D., Fiszdon, J. M., Johannesen, J. K., Lindenmayer, J.-P., McGurk, S. R., Medalia, A. A., Penadés, R., Saperstein, A. M., Twamley, E. W., Ueland, T., & Wykes, T. (2020). Cognitive remediation for schizophrenia: An expert working group white paper on core techniques. Schizophrenia Research, 215, 4953. https://doi.org/10.1016/j.schres.2019.10.047 CrossRefGoogle Scholar
Czaja, S. J., Charness, N., Fisk, A. D., Hertzog, C., Nair, S. N., Rogers, W. A., & Sharit, J. (2006). Factors predicting the use of technology: Findings from the center for research and education on aging and technology enhancement (CREATE). Psychology and Aging, 21(2), 333352. https://doi.org/10.1037/0882-7974.21.2.333 CrossRefGoogle Scholar
Czaja, S. J., Kallestrup, P., & Harvey, P. D. (2023). The efficacy of a home-based functional skills training program for older adults with and without a cognitive impairment. Innovations in Aging.Google Scholar
Czaja, S. J., Kallestrup, P., Harvey, P. D., & Pak, R. (2020). Evaluation of a novel technology-based program designed to assess and train everyday skills in older adults. Innovation in Aging, 4(6), igaa052. https://doi.org/10.1093/geroni/igaa052 CrossRefGoogle ScholarPubMed
Douglas, K., Jordan, J., Inder, M., Crowe, M., Mulder, R., Lacey, C., Beaglehole, B., Bowie, C., & Porter, R. (2020). Cognitive remediation for outpatients with recurrent mood disorders: A feasibility study. Journal of Psychiatric Practice, 26(4), 273283. https://doi.org/10.1097/PRA.0000000000000487 CrossRefGoogle ScholarPubMed
Douglas, K. M., Milanovic, M., Porter, R. J., & Bowie, C. R. (2020). Clinical and methodological considerations for psychological treatment of cognitive impairment in major depressive disorder. BJPsych Open, 6(4), e67. https://doi.org/10.1192/bjo.2020.53 CrossRefGoogle ScholarPubMed
Dowell-Esquivel, C., Czaja, S. J., Kallestrup, P., Depp, C. A., Saber, J. N., & Harvey, P. D. (2023). Computerized cognitive and skills training in older people with mild cognitive impairment: Using ecological momentary assessment to index treatment-related changes in real-world performance of technology-dependent functional tasks. The American Journal of Geriatric Psychiatry, S1064-7481(23), 0046300473. https://doi.org/10.1016/j.jagp.2023.10.014 Google Scholar
Edwards, J. D., Wadley, V. G., Myers, R. S., Roenker, D. L., Cissell, G. M., & Ball, K. K. (2002). Transfer of a speed of processing intervention to near and far cognitive functions. Gerontologia, 48(5), 329340. https://doi.org/10.1159/000065259 CrossRefGoogle ScholarPubMed
Edwards, J. D., Wadley, V. G., Vance, D. E., Wood, K., Roenker, D. L., & Ball, K. K. (2005). The impact of speed of processing training on cognitive and everyday performance. Aging and Mental Health, 9(3), 262271. https://doi.org/10.1080/13607860412331336788 CrossRefGoogle ScholarPubMed
Gavelin, H. M., Dong, C., Minkov, R., Bahar-Fuchs, A., Ellis, K. A., Lautenschlager, N. T., Mellow, M. L., Wade, A. T., Smith, A. E., Finke, C., Krohn, S., & Lampit, A. (2021). Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. Ageing Research Reviews, 66, 101232. https://doi.org/10.1016/j.arr.2020.101232 CrossRefGoogle ScholarPubMed
Harvey, P. D., Balzer, A. M., & Kotwicki, R. J. (2019). Training engagement, baseline cognitive functioning, and cognitive gains with computerized cognitive training: A cross-diagnostic study. Schizophrenia Research: Cognition, 19, 100150. https://doi.org/10.1016/j.scog.2019.100150 Google ScholarPubMed
Harvey, P. D., Zayas-Bazan, M., Tibiriçá, L., Kallestrup, P., & Czaja, S. J. (2023). Improvements in performance based measures of cognition and functional capacity after computerized functional skills training in older people with mild cognitive impairment and healthy comparators. Psychiatry Research.Google Scholar
Hill, N. T. M., Mowszowski, L., Naismith, S. L., Chadwick, V. L., Valenzuela, M., & Lampit, A. (2017). Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. The American Journal of psychiatry, 174(4), 329340. https://doi.org/10.1176/appi.ajp.2016.16030360 CrossRefGoogle ScholarPubMed
IBM Corporation (2023). Statistical Package for the Social Sciences (SPSS) version 28. IBM Corporation.Google Scholar
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17(5), 368375. https://doi.org/10.1097/JGP.0b013e31819431d5 CrossRefGoogle ScholarPubMed
Jastak, S. (1993). Wide-range achievement test (3rd ed.) Wide Range, Inc.Google Scholar
Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68(2-3), 283297. https://doi.org/10.1016/j.schres.2003.09.011 CrossRefGoogle ScholarPubMed
Keefe, R. S. E., Davis, V. G., Atkins, A. S., Vaughan, A., Patterson, T., Narasimhan, M., & Harvey, P. D. (2016). Validation of a computerized test of functional capacity. Schizophrenia Research, 175(1-3), 9096. https://doi.org/10.1016/j.schres.2016.03.038 CrossRefGoogle ScholarPubMed
Lampit, A., Hallock, H., Valenzuela, M., & Gandy, S. (2014). Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLOS Medicine, 11(11), e1001756.CrossRefGoogle ScholarPubMed
Marshall, G. A., Aghjayan, S. L., Dekhtyar, M., Locascio, J. J., Jethwani, K., Amariglio, R. E., Johnson, K. A., Sperling, R. A., & Rentz, D. M. (2017). Activities of daily living measured by the harvard automated phone task track with cognitive decline over time in non-demented elderly. Journal of Prevention of Alzheimer’s Disease, 4(2), 8186. https://doi.org/10.14283/jpad.2017.10 Google ScholarPubMed
Marshall, G. A., Rentz, D. M., Frey, M. T., Locascio, J. J., Johnson, K. A., Sperling, R. A., & Alzheimer’s Disease Neuroimaging Initiative (2011). Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 300308. https://doi.org/10.1016/j.jalz.2010.04.005 CrossRefGoogle ScholarPubMed
Nasreddine, Z. S., Phillips, N. A., Bédirian, Vérie, Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. https://doi.org/10.1111/j.1532-5415.2005.53221.x CrossRefGoogle Scholar
Park, D., & Schwarz, N. (2012). Cognitive aging: A primer. Psychology Press.CrossRefGoogle Scholar
Petersen, R. C., Thomas, R. G., Grundman, M., Bennett, D., Doody, R., Ferris, S., Galasko, D., Jin, S., Kaye, J., Levey, A., Pfeiffer, E., Sano, M., van Dyck, C. H., & Thal, L. J. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. New England Journal of Medicine, 352(23), 23792388. https://doi.org/10.1056/NEJMoa050151 CrossRefGoogle ScholarPubMed
Roheger, M., Kalbe, E., Corbett, A., Brooker, H., & Ballard, C. (2020). Lower cognitive baseline scores predict cognitive training success after 6 months in healthy older adults: Results of an online RCT. International Journal of Geriatric Psychiatry, 35(9), 10001008. https://doi.org/10.1002/gps.532 CrossRefGoogle ScholarPubMed
Roheger, M., Kessler, J., & Kalbe, E. (2019). Structured cognitive training yields best results in healthy older adults, and their ApoE4 state and baseline cognitive level predict training benefits. Cognitive and Behavioral neurology, 32(2), 7686. https://doi.org/10.1097/WNN.0000000000000195 CrossRefGoogle ScholarPubMed
Ross, L. A., Edwards, J. D., O’Connor, M. L., Ball, K. K., Wadley, V. G., & Vance, D. E. (2016). The transfer of cognitive speed of processing training to older adults’ driving mobility Across 5 Years. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71(1), 8797. https://doi.org/10.1093/geronb/gbv022 CrossRefGoogle Scholar
Sherman, D. S., Mauser, J., Nuno, M., & Sherzai, D. (2017). The efficacy of cognitive intervention in mild cognitive impairment (MCI): A meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 27(4), 440484. https://doi.org/10.1007/s11065-017-9363-3 CrossRefGoogle ScholarPubMed
Tetlow, A. M., & Edwards, J. D. (2017). Systematic literature review and meta-analysis of commercially available computerized cognitive training among older adults. Journal of Cognitive Enhancement, 1(4), 559575.CrossRefGoogle Scholar
Willis, S. L., Tennstedt, S. L., Marsiske, M., Ball, K., Elias, J., Koepke, K. M., Morris, J. N., Rebok, G. W., Unverzagt, F. W., Stoddard, A. M., Wright, E., & ACTIVE Study Group, for the (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA, 296(23), 28052814. https://doi.org/10.1001/jama.296.23.2805 CrossRefGoogle ScholarPubMed
Woodcock, R. W., Alvarado, C. G., Ruef, M., & Shrank, R. (2017). Woodcock-Muñoz language survey (Third ed.) Riverside.Google Scholar
Zhang, H., Huntley, J., Bhome, R., Holmes, B., Cahill, J., Gould, R. L., Wang, H., Yu, X., & Howard, R. (2019). Effect of computerized cognitive training on cognitive outcomes in mild cognitive impairment: A systematic review and meta-analysis. BMJ Open, 9(8), e027062. https://doi.org/10.1136/bmjopen-2018-027062 CrossRefGoogle ScholarPubMed
Supplementary material: File

Harvey et al. supplementary material

Harvey et al. supplementary material
Download Harvey et al. supplementary material(File)
File 222.6 KB