Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-15T22:43:58.110Z Has data issue: false hasContentIssue false

The amino acid, collagen and mineral composition of preruminant calves

Published online by Cambridge University Press:  27 March 2009

A. P. Williams
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

The amino acid, mineral and collagen composition of certain different components of the bodies of preruminant calves was determined. The amino acid composition (g/kg crude protein) of the empty bodies of preruminant calves was: hydroxyproline, 40; aspartic acid, 81; threonine, 40; serine, 44; glutamic acid, 129; proline, 81; glycine, 113; alanine, 71; cystine, 13; valine, 39; methionine, 17; isoleucine, 28; leucine, 69; tyrosine, 25; phenylalanine, 36; lysine, 64; histidine, 25; arginine, 70; tryptophan, 8. The hydroxyproline, proline and glycine contents were much higher than in bovine muscle because about one-third of the total protein of the calves was collagen, a protein particularly rich in these amino acids. The collagen content of the individual body components varied considerably as did their amino acid contents. There were also some marked differences in the contents of some of the major constituents and minerals in the individual components. In particular the internal organs and blood (component (6)) contained significantly lower concentrations of crude protein, ash, Ca, Mg and P but significantly higher concentrations of Cu and Fe.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anasuya, A. & Narasinga Rao, B. S. (1970). Relationship between body collagen and urinary hydroxyproline excretion in young rats fed on a low-protein or lowcalorie diet. British Journal of Nutrition 24, 97107.CrossRefGoogle ScholarPubMed
Bigwood, E. J. (1960). Acides aminés du lait de vache, de la viande de boeuf, des aliments pour betail et du rumen. Comptes Eendus de Recherches Institut pour I'Encouragement de la Recherche Scientifique dans I'Industrie et I'Agriculture Bruxelles 26, 111–33.Google Scholar
Buraczewski, S. (1973). Amino acid composition of the body of pigs and its implication in the amino acid requirements. Proceedings of the Symposium on Amino Acids. Brno, Czeckoslovakia, C, 16.Google Scholar
Cavell, A. J. (1955). The colorimetric determination of phosphorus in plant materials. Journal of the Science of Food and Agriculture 6, 479–80.CrossRefGoogle Scholar
Coombe, N. B. & Smith, R. H. (1973). Absorption of glucose and galactose and digestion and absorption of lactose by the preruminant calf. British Journal of Nutrition 30, 331–44.CrossRefGoogle Scholar
Florence, E. & Mitchell, K. G. (1972). A procedure for preparation of pig carcasses for chemical analysis with special reference to microanalysis. Proceedings of the British Society of Animal Production 1, 101–7.Google Scholar
Goll, D. E., Bray, R. W. & Hoekstra, W. G. (1963). Age-associated changes in muscle composition. The isolation and properties of a collagenous residue from bovine muscle. Journal of Food Science 28, 503–9.CrossRefGoogle Scholar
Griffiths, T. W. (1977). Amino acid composition of beef carcass meat and amino acid requirements of growing cattle. Proceedings of the Nutrition Society 36, 79A.Google ScholarPubMed
Harkness, M. L. R., Harkness, R. D. & James, D. W. (1958). The effect of a protein-free diet on the collagen content of mice. Journal of Physiology 144, 307–13.CrossRefGoogle ScholarPubMed
Hogan, A. G. & Nierman, J. L. (1927). Studies in animal nutrition. VI. The distribution of the mineral elements in the animal body as influenced by age and condition. Research Bulletin 107, University of Missouri College of Agriculture, Agricultural Experiment Station, pp. 545.Google Scholar
Hutton, K. & Annison, E. F. (1972). Control of nitrogen metabolism in the ruminant. Proceedings of the Nutrition Society 31, 151–8.CrossRefGoogle ScholarPubMed
Kirchgessner, M. & Neesse, K. R. (1976). Kupfer-, Mangan-und Zinkgehalte im Ganzkorper und einzelnen Teilstücken unterschiedlich schwerer 40 Mastkälber. Zeitschrift für Lebensmittel Untersuchung und-Forschung 161, 16.CrossRefGoogle Scholar
Lewis, D. & D'Mello, J. P. F. (1968). Growth and dietary amino acid balance. In Growth and Development of Mammals (ed. Lodge, G. A. and Lamming, G. E.), pp. 345–67. London: Butterworths.Google Scholar
Lough, A. K., Navia, J. M. & Harris, R. S. (1966). Improved procedure for extracting food fatty acids. Journal of the American Oil Chemists' Society 43 627–31.CrossRefGoogle ScholarPubMed
Mello, F. C, Field, R. A. & Chang, Y.-O. (1975). Amino acid profile of bovine bone during growth. Growth 39, 241–9.Google ScholarPubMed
Miller, E. L. (1967). Determination of the tryptophan content of feeding stuffs with particular reference to cereals. Journal of the Science of Food and Agriculture 18, 381–6.CrossRefGoogle Scholar
Moore, S. (1963). On the determination of cystine as cysteic acid. Journal of Biological Chemistry 238, 235–7.CrossRefGoogle Scholar
Moulton, C. R., Trowbridge, P. F. & Haigh, L. D. (1922). Studies in animal nutrition. III. Changes in chemical composition on different planes of nutrition. Research Bulletin 55, University of Missouri. College of Agriculture, Agricultural Experiment Station, pp. 388.Google Scholar
Neesse, K. R. & Kirchgessner, M. (1975 a). Zur chemischen und energetischen Veränderung der Körperzusammensetzung unterschiedlich schwerer Mastkälber. Zuchtungskunde 47, 207–17.Google Scholar
Neesse, K. R. & Kirchgessner, M. (1975 b). Veränderungen des Nährstoff-und Energiegehaltes in definierten Teilstiicken des Mastkalbes. Zeitschrift für Lebensmitteluntersuchung und -Forschung 159, 193203.CrossRefGoogle Scholar
Neesse, K. R. & Kirchgessner, M. (1976). Experimentelle Untersuchungen zur Nährstoffretention des Kalbes im Verlauf der Mast. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 36, 231–40.CrossRefGoogle Scholar
Neuman, R. E. & Logan, M. A. (1950). The determination of collagen and elastin in tissues. Journal of Biological Chemistry 186, 549–56.CrossRefGoogle ScholarPubMed
OsińSka, Z. & Ziolecka, A. (1972). A note on the protein content of the empty body of young Polish black-and-white lowland bulls. Animal Production 14, 119–22.Google Scholar
Porter, J. W. G., Westgarth, D. R. & Williams, A. P. (1968). A collaborative test of ion-exchange chromatographic methods for determining amino acids. British Journal of Nutrition 22, 437–50.CrossRefGoogle Scholar
Schulz, E., Oslage, H. J. & Daenicke, R. (1974). Untersuchungen über die Zusammensetzung der Körpersubstanz sowie den Stoff- und Energieansatz bei waohsenden Mastbullen. Fortschritte in der Tierphysiologie und Tiernährung 4, 570.Google Scholar
Seifter, S. & Gallop, P. M. (1966). The structure proteins. In The Proteins, vol. 4 (ed. Neurath, H.), pp. 153458. New York: Academic Press.Google Scholar
Smith, R. H. & McAllan, A. B. (1970). Nucleic acid metabolism in the ruminant. 2. Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen, and the fate of dietary nucleic acids. British Journal of Nutrition 24, 545–56.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Automatic recording apparatus for use in the chromatography of amino acids. Analytical Chemistry 30, 1190–206.CrossRefGoogle Scholar
Sutton, J. D., Storey, J. E. & Nicholson, J. W. G. (1970). The digestion of fatty acids in the stomach and intestines of sheep given widely different rations. Journal of Dairy Research 37, 97105.CrossRefGoogle Scholar
Ullrey, D. E. (1977). Analytical problems in evaluating mineral concentrations in animal tissues. Journal of Animal Science 44, 475–85.CrossRefGoogle ScholarPubMed
Vognarová, I., Dvorák, Z. & Böhm, R. (1968). Collagen and elastin in different cuts of veal and beef. Journal of Food Science 33, 339–43.CrossRefGoogle Scholar
Widdowson, E. M. & Dickerson, J. W. T. (1964). Chemical composition of the body. In Mineral Metabolism (ed. Comar, C. L. and Bronner, F.), vol. 2A, New York: Academic Press.Google Scholar
Williams, H. H., Curtin, L. V., Abraham, J., Loosli, J. K. & Maynard, L. A. (1954). Estimation of growth requirements for amino acids by assay of the carcass. Journal of Biological Chemistry 208, 277–86.CrossRefGoogle ScholarPubMed
Williams, A. P. & Smith, R. H. (1975). Concentrations of amino acids and urea in the plasma of the preruminant calf and estimation of the amino acid requirements. British Journal of Nutrition 33, 149–58.CrossRefGoogle ScholarPubMed