Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-15T16:18:34.898Z Has data issue: false hasContentIssue false

Evaluating greenhouse gas mitigation practices in livestock systems: an illustration of a whole-farm approach

Published online by Cambridge University Press:  20 May 2009

A. A. STEWART
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N2
S. M. LITTLE
Affiliation:
Research Centre, Agriculture and Agri-Food Canada, P.O. Box 3000, Lethbridge, AB, CanadaT1J 4B1
K. H. OMINSKI*
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N2
K. M. WITTENBERG
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, MB, CanadaR3T 2N2
H. H. JANZEN
Affiliation:
Research Centre, Agriculture and Agri-Food Canada, P.O. Box 3000, Lethbridge, AB, CanadaT1J 4B1
*
*To whom all correspondence should be addressed. Email: k_ominski@umanitoba.ca

Summary

As agriculture contributes about 0·08 of Canada's greenhouse gas (GHG) emissions, reducing agricultural emissions would significantly decrease total Canadian GHG output. Evaluating mitigation practices is not always easy because of the complexity of farming systems in which one change may affect many processes and associated emissions. The objective of the current study was to compare the effects of selected management practices on net whole-farm emissions, expressed in CO2 equivalents (CO2e) from a beef production system, as estimated for hypothetical farms at four disparate locations in western Canada. Whole-farm emissions (t CO2e) per unit of protein output (t) of 11 management systems (Table 2) were compared for each farm using a model based, in part, on Intergovernmental Panel on Climate Change (IPCC) equations. Compared with the baseline management scenario, maintaining cattle on alfalfa-grass pastures showed the largest decrease (0·53–1·08 t CO2e/t protein) in emissions for all locations. Feeding lower quality forage over winter showed the greatest increase in emissions per unit protein on the southern Alberta (S.AB) and northern Alberta (N.AB) farms, with increases of 1·36 and 2·22 t CO2e/t protein, respectively. Eliminating the fertilization of forages resulted in the largest increase (4·20 t CO2e/t protein) in emissions per unit protein on the Saskatchewan (SK) farm, while reducing the fertilizer rate by half for all crops showed the largest increase (11·40 t CO2e/t protein) on the Manitoba (MB) farm. The findings, while approximate, illustrate the importance of considering all GHGs simultaneously, and show that practices which best reduce emissions may vary among locations. The findings also suggest merit in comparing emissions on the basis of CO2e per unit of protein exported off-farm, rather than on the basis of total CO2e or CO2e per hectare.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alberta Agriculture, Food and Rural Development (AAFRD) (2003). Cowbytes. Beef Ration Balancer, Version 4. Edmonton, AB, Canada: Home Study Program.Google Scholar
Alberta Agriculture, Food and Rural Development (AAFRD) (2004). Choosing the Kind and Rate of Fertilizer. Available online at http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex3904 (verified 13 November 2008).Google Scholar
Alberta Agriculture, Food and Rural Development (AAFRD) (2007 a). Farmer Reported Variety Yields for Irrigation Areas – Barley. Available online at http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex2845 (accessed 20 July 2007).Google Scholar
Alberta Agriculture, Food and Rural Development (AAFRD) (2007 b). Varieties of Perennial Hay and Pasture Crops for Alberta. Available online at http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex105 (verified 13 November 2008).Google Scholar
Alberta Agriculture, Food and Rural Development (AAFRD) (2007 c). Farmer Reported Variety Yields for Peace River Soil Zone – Barley. Available online at http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex2850 (accessed 20 July 2007).Google Scholar
Alberta Agriculture, Food and Rural Development (AAFRD) (2007 d). Dressing Percentage of Slaughter Cattle. Available online at http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/sis11074 (accessed 28 June 2007).Google Scholar
Basarab, J. A., Okine, E. K., Baron, V. S., Marx, T., Ramsey, P., Ziegler, K. & Lyle, K. (2005). Methane emissions from enteric fermentation in Alberta's beef cattle population. Canadian Journal of Animal Science 85, 501512.CrossRefGoogle Scholar
Beauchemin, K. A., Kreuzer, M., O'mara, F. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture 48, 2127.CrossRefGoogle Scholar
Berg, R. T. & Butterfield, R. M. (1976). Changes in chemical composition. In New Concepts of Cattle Growth, pp. 4464. Parramatta, Australia: Macarthur Press.Google Scholar
Boadi, D. A. & Wittenberg, K. M. (2002). Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Science 82, 201206.CrossRefGoogle Scholar
Boadi, D. A., Wittenberg, K. M., Scott, S. L., Burton, D., Buckley, K., Small, J. A. & Ominski, K. H. (2004). Effect of low and high forage diet on enteric and manure pack GHG emissions from a feedlot. Canadian Journal of Animal Science 84, 445453.CrossRefGoogle Scholar
Boehm, M., Junkins, B., Desjardins, R., Kulshreshtha, S. & Lindwall, W. (2004). Sink potential of Canadian agricultural soils. Climatic Change 65, 297314.CrossRefGoogle Scholar
Butson, S. & Berg, R. T. (1984). Lactation performance of range beef and dairy-beef cows. Canadian Journal of Animal Science 64, 253265.CrossRefGoogle Scholar
Chen, M. & Wolin, M. J. (1979). Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Applied and Environmental Microbiology 38, 7277.CrossRefGoogle ScholarPubMed
Collas, P. & Liang, C. (2007). Agriculture. In National Inventory Report – Greenhouse Gas Sources and Sinks in Canada 1990–2005, pp. 154176. Gatineau, Quebec: Greenhouse Gas Division, Environment Canada.Google Scholar
Czerkawski, J. W., Blaxter, K. L. & Wainman, F. W. (1966). The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. British Journal of Nutrition 20, 349362.CrossRefGoogle Scholar
Ellert, B. H. & Janzen, H. H. (2008). Nitrous oxide, carbon dioxide and methane emissions from irrigated cropping systems as influenced by legumes, manure, and fertilizer. Canadian Journal of Soil Science 88, 207217.CrossRefGoogle Scholar
Fairey, N. A. (1991). Effects of nitrogen fertilizer, cutting frequency, and companion legume on herbage production and quality of four grasses. Canadian Journal of Plant Science 71, 717725.CrossRefGoogle Scholar
Frame, J. & Laidlaw, A. S. (2005). Prospects for temperate forage legumes. In Grasslands: Development, Opportunities, Perspectives (Eds Reynolds, S. G. & Frame, J.), pp. 3–28. Enfield, NH: Science Publishers, Inc.Google Scholar
Grant, B., Smith, W. N., Desjardins, R., Lemke, R. & Li, C. (2004). Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Climatic Change 65, 315332.CrossRefGoogle Scholar
Gregorich, E. G., Rochette, P., VandenBygaart, A. J. & Angers, D. A. (2005). Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil and Tillage Research 83, 5372.CrossRefGoogle Scholar
Guan, H., Wittenberg, K. M., Ominski, K. H. & Krause, D. O. (2006). Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science 84, 18961906.CrossRefGoogle ScholarPubMed
Intergovernmental Panel on Climate Change (IPCC) (2001). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Eds Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanul, S., Buendia, L., Hoppaus, R., Martensen, T., Meijer, J., Miwa, K. & Tanabe, K.). Japan: Institute for Global Environmental Strategies (IGES).Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC Guidelines for National Greenhouse Gas Inventories (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Japan: IGES.Google Scholar
Janzen, H. H., Campbell, C. A., Izaurralde, R. C., Ellert, B. H., Juma, N., McGill, W. B. & Zentner, R. P. (1998). Management effects on soil C storage on the Canadian prairies. Soil and Tillage Research 47, 181195.CrossRefGoogle Scholar
Janzen, H. H., Beauchemin, K. A., Bruinsma, Y., Campbell, C. A., Desjardins, R. L., Ellert, B. H. & Smith, E. G. (2003). The fate of nitrogen in agroecosystems: An illustration using Canadian estimates. Nutrient Cycling in Agroecosystems 67, 85–102.CrossRefGoogle Scholar
Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science 73, 24832492.CrossRefGoogle ScholarPubMed
Jun, P., Gibbs, M. & Gaffney, K. (2002). CH4 and N2O emissions from livestock manure. In Background Papers – IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Eds Ngara, T., Miwa, K., Buendia, L., Tanabe, K. & Pipatti, R.), pp. 321338. Japan: IGES.Google Scholar
Landscapes of Canada Working Group (2005). Soil Landscapes of Canada Version 3.0. Agriculture and Agri-Food Canada. Available online http://sis.agr.gc.ca/cansis/nsdb/slc/v3.0/index.html (verified 14 November 2008).Google Scholar
Manitoba Agriculture, Food and Rural Initiatives (2005). 2005 Manitoba Agriculture Yearbook. Available online at http://www.gov.mb.ca/agriculture/statistics/aac16s00.html (verified 14 November 2008).Google Scholar
Marshall, I. B., Schut, P. & Ballard, M. (Compilers) (1999). A National Ecological Framework for Canada: Attribute Data. Environmental Quality Branch, Ecosystems Science Directorate, Environment Canada and Research Branch, Agriculture and Agri-Food Canada, Ottawa/Hull. Available online at http://sis.agr.gc.ca/cansis/nsdb/ecostrat/data_files.html (verified 23 January 2009).Google Scholar
Mcallister, T. A., Okine, E. K., Mathison, G. W. & Cheng, K. J. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Canadian Journal of Animal Science 76, 231243.CrossRefGoogle Scholar
McCaughey, W. P., Wittenberg, K. & Corrigan, D. (1997). Methane production by steers on pasture. Canadian Journal of Animal Science 77, 519524.CrossRefGoogle Scholar
McCaughey, W. P., Wittenberg, K. & Corrigan, D. (1999). Impact of pasture type on methane production by lactating beef cows. Canadian Journal of Animal Science 79, 221226.CrossRefGoogle Scholar
McGinn, S. M., Beauchemin, K. A., Coates, T. & Colombatto, D. (2004). Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science 82, 33463356.CrossRefGoogle ScholarPubMed
Mir, P. S., Mir, Z., Kuber, P. S., Gaskins, C. T., Martin, E. L., Dodson, M. V., Elias Calles, J. A., Johnson, K. A., Busboom, J. R., Wood, A. J., Pittenger, G. J. & Reeves, J. J. (2002). Growth, carcass characteristics, muscle conjugated linoleic acid (CLA) content and response to intravenous glucose challenge in high percentage Wagyu, WagyuxLimousin, and Limousin steers fed sunflower oil-containing diets. Journal of Animal Science 80, 29963004.CrossRefGoogle Scholar
National Research Council (NRC) (2001). Nutrient Requirements of Dairy Cattle, 7th Revised edition. Washington, DC: National Academy Press.Google Scholar
Neitzert, F., Chiang Cheng, L., Collas, P., Matin, A., Folliet, N. & Mckibbon, S. (2007). Executive summary. In National Inventory Report – Greenhouse Gas Sources and Sinks in Canada 1990–2005, pp. 118. Gatineau, Quebec: Greenhouse Gas Division, Environment Canada.Google Scholar
Nyborg, M., Laidlaw, J. W., Solberg, E. D. & Malhi, S. S. (1997). Denitrification and nitrous oxide emissions from a black chernozemic soil during spring thaw in Alberta. Canadian Journal of Soil Science 77, 153160.CrossRefGoogle Scholar
Ominski, K. H., Boadi, D. A. & Wittenberg, K. M. (2006). Enteric methane emissions from backgrounded cattle consuming all-forage diets. Canadian Journal of Animal Science 86, 393400.CrossRefGoogle Scholar
Prior, R. L. & Laster, D. B. (1979). Development of the bovine fetus. Journal of Animal Science 48, 15461553.CrossRefGoogle ScholarPubMed
Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., Solomon, S. (2001). Radiative forcing of climate change. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Eds Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A.), Cambridge, UK: Cambridge University Press.Google Scholar
Robertson, G. P. & Grace, P. R. (2004). Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Environment, Development and Sustainability 6, 5163.CrossRefGoogle Scholar
Rochette, P., Worth, D. E., Lemke, R. L., Mcconkey, B. G., Pennock, D. J., Wagner-Riddle, C. & Desjardins, R. L. (2008). Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Canadian Journal of Soil Science 88, 641654.CrossRefGoogle Scholar
Saskatchewan Agriculture and Food (2007 a). 2006 Saskatchewan Crop District Crop Production. Available online at http://www.agriculture.gov.sk.ca/Default.aspx?DN=5c9068e4-3aa1-4561-88d5-d4043b3afad6 (accessed 20 July 2007).Google Scholar
Saskatchewan Agriculture and Food (2007 b). Relative Yields of Varieties of Perennial Forage Crops in Saskatchewan. Available online at http://www.agriculture.gov.sk.ca/Default.aspx?DN=abb1c8ab-17c1-4efa-ba1f-2b0f7e78004e (accessed 20 July 2007).Google Scholar
Schils, R. L. M., Verhagen, A., Aarts, H. F. M. & Šebek, L. B. J. (2005). A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems. Nutrient Cycling in Agroecosystems 71, 163175.CrossRefGoogle Scholar