Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T14:02:05.404Z Has data issue: false hasContentIssue false

Nutritional impact of crude glycerine infusion into the rumen of wethers fed a tropical or a temperate forage grass

Published online by Cambridge University Press:  11 July 2016

D. ZENI
Affiliation:
Departamento de Zootecnia (Animal Science), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
G. V. KOZLOSKI*
Affiliation:
Departamento de Zootecnia (Animal Science), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
M. GINDRI
Affiliation:
Departamento de Zootecnia (Animal Science), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
S. STEFANELLO
Affiliation:
Departamento de Zootecnia (Animal Science), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
F. HENTZ
Affiliation:
Departamento de Zootecnia (Animal Science), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
L. OLIVEIRA
Affiliation:
Departamento de Zootecnia (Animal Science), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
*
*To whom all correspondence should be addressed. Email: gilberto.kozloski@ufsm.br

Summary

The current study evaluated the nutritional impact of crude glycerine (CG) supplementation to wethers fed only forage grass. Eight Polwarth wethers were used in a replicated 4 × 4 Latin Square. Treatments consisted of no CG (control, CON) or intra-ruminal infusion of CG at daily rates of 0·5, 1·5 or 3·0 ml/kg body weight (BW). In each Latin Square, four animals were fed Avena strigosa and four were fed Cynodon sp. hay ad libitum. The actual concentration of glycerol in diet was similar for both forage types and varied from 21 to 364 g/kg dry matter. No interactions between forage type and CG treatments were detected and no differences were observed between the CON and 0·5 CG treatment for most variables. Both the organic matter (OM) and the digestible OM intake decreased linearly at increased levels of CG infusion, whereas no treatment effect was observed on OM and neutral detergent fibre (NDF) digestibility. The duodenal flow of rumen microbial nitrogen (N) was not affected, whereas the duodenal flow of α-amino N decreased linearly at increased levels of CG infusion. In conclusion, CG supplementation at a rate of up to 0·5 ml/kg BW/day did not change the nutrient supply whereas greater amounts of CG supplementation negatively impacted the nutrient supply to wethers fed only grass forage. The forage digestibility, in turn, was not affected by CG supplementation.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo El-Nor, S., AbuGhazaleh, A. A., Potu, R. B., Hastings, D. & Khattab, M. S. A. (2010). Effects of differing levels of glycerol on rumen fermentation and bacteria. Animal Feed Science and Technology 162, 99105.CrossRefGoogle Scholar
AbuGhazaleh, A. A., Abo El-Nor, S. & Ibrahim, S. A. (2011). The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters. Journal of Animal Physiology and Animal Nutrition 95, 313319.CrossRefGoogle ScholarPubMed
AOAC (1997). Official Methods of Analysis, 16th edn, 3rd revision. Gaithersburg, MD: Association of Official Analytical Chemists, Inc.Google Scholar
Avila-Stagno, J., Chaves, A. V., He, M. L., Harstad, O. M., Beauchemin, K. A., McGinn, S. M. & McAllister, T. A. (2013). Effects of increasing concentrations of glycerol in concentrate diets on nutrient digestibility, methane emissions, growth, fatty acid profiles, and carcass traits of lambs. Journal of Animal Science 91, 829837.CrossRefGoogle ScholarPubMed
Boyd, J., Bernard, J. K. & West, J. W. (2013). Effects of feeding different amounts of supplemental glycerol on ruminal environment and digestibility of lactating dairy cows. Journal of Dairy Science 96, 470476.CrossRefGoogle ScholarPubMed
Carro, M. D. & Miller, E. L. (2002). Comparison of microbial markers (15N and purine bases). and bacterial isolates for the estimation of rumen microbial protein synthesis. Animal Science 75, 315321.CrossRefGoogle Scholar
Carter, R. R. & Grovum, W. L. (1990). A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. Journal of Animal Science 68, 28112832.CrossRefGoogle ScholarPubMed
Charmley, E. & Veira, D. M. (1990). Inhibition of proteolysis in alfalfa silages using heat at harvest: effects on digestion in the rumen, voluntary intake and animal performance. Journal of Animal Science 68, 20422051.CrossRefGoogle ScholarPubMed
Chen, X. B. & Gomes, M. J. (1992). Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives – an Overview of the Technical Details. Occasional Publication of the International Feed Resources Unit. Aberdeen, UK: Rowett Research Institute.Google Scholar
Chung, Y. H., Rico, D. E., Martinez, C. M., Cassidy, T. W., Noirot, V., Ames, A. & Varga, G. A. (2007). Effects of feeding dry glycerin to early postpartum holstein dairy cows on lactational performance and metabolic profiles. Journal of Dairy Science 90, 56825691.CrossRefGoogle ScholarPubMed
DeFrain, J. M., Hippen, A. R., Kalscheur, K. F. & Jardon, P. W. (2004). Feeding glycerol to transition dairy cows: effects on blood metabolites and lactation performance. Journal of Dairy Science 87, 41954206.CrossRefGoogle ScholarPubMed
Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J. & Bannink, A. (2012). Ruminal pH regulation and nutritional consequences of low pH. Animal Feed Science and Technology 172, 2233.CrossRefGoogle Scholar
Drouillard, J. S. (2012). Utilization of crude glycerin in beef cattle. In Biofuel Co-products as Livestock Feed – Opportunities and Challenges (Ed. Makkar, H. P. S.), pp. 155161. Rome: FAO.Google Scholar
Farias, M. S. I. N., Prado, N., Valero, M. V., Zawadzki, F., Silva, R. R., Eiras, C. E., Rivaroli, D. C. & Lima, B. S. (2012). Níveis de glicerina para novilhas suplementadas em pastagens: Desempenho, ingestão, eficiência alimentar e digestibilidad. Semina: Ciências Agrárias 33, 11771188.Google Scholar
Garton, G. A., Lough, A. K. & Vioque, E. (1961). Glyceride hydrolysis and glycerol fermentation by sheep rumen contents. Journal of General Microbiology 25, 215225.CrossRefGoogle ScholarPubMed
Gunn, P. J., Lemenager, R. P., Buckmaster, D. R., Claeys, M. C. & Lake, S. L. (2011). Effects of dried distillers grains with solubles and crude glycerin on performance, carcass characteristics, and metabolic parameters of early weaned beef calves. Professional Animal Scientist 27, 283294.CrossRefGoogle Scholar
Hales, K. E., Kraich, K. J., Bondurant, R. G., Meyer, B. E., Luebbe, M. K., Brown, M. S., Cole, N. A. & MacDonald, J. C. (2013). Effects of glycerin on receiving performance and health status of beef steers and nutrient digestibility and rumen fermentation characteristics of growing steers. Journal of Animal Science 91, 42774289.CrossRefGoogle ScholarPubMed
Hentz, F., Kozloski, G. V., Orlandi, T., Ávila, S. C., Castagnino, P. S., Stefanello, C. M. & Estivallet Pacheco, G. F. (2012). Intake and digestion by wethers fed a tropical grass-based diet supplemented with increasing levels of canola meal. Livestock Science 147, 8995.CrossRefGoogle Scholar
Hess, B. W., Lake, S. L. & Gunter, S. A. (2008). Using glycerin as a supplement for forage-fed ruminants. Journal of Animal Science 86 (E-Suppl. 2), 392393. (Abstr.).Google Scholar
Illius, A. W. & Jessop, N. S. (1996). Metabolic constraints on voluntary intake in ruminants. Journal of Animal Science 74, 30523062.CrossRefGoogle ScholarPubMed
Kozloski, G. V., Stefanello, C. M., Mesquita, F. R., Alves, T. P., Ribeiro Filho, H. M., Almeida, J. G. & Moraes Genro, T. C. (2014). Technical note: evaluation of markers for estimating duodenal digesta flow and ruminal digestibility: acid detergent fiber, sulfuric acid detergent lignin, and n-alkanes. Journal of Dairy Science 97, 17301735.CrossRefGoogle ScholarPubMed
Krehbiel, C. R. (2008). Ruminal and physiological metabolism of glycerin. Journal of Animal Science 86 (E-Suppl. 2), 392. (Abstr.).Google Scholar
Kristensen, N. B. & Raun, B. M. L. (2007). Ruminal fermentation, portal absorption, and hepatic metabolism of glycerol infused into the rumen of lactating dairy cows. In Energy and Protein Metabolism and Nutrition (Eds Ortigues-Marty, I., Miraux, N. & Brand-Williams, W.), pp. 355356. EAAP publication No. 124. Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
Krueger, N. A., Anderson, R. C., Tedeschi, L. O., Callaway, T. R., Edrington, T. S. & Nisbet, D. J. (2010). Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro . Bioresource Technology 101, 84698472.CrossRefGoogle ScholarPubMed
Lee, S.-Y., Lee, S.-M., Cho, Y.-B., Kam, D.-K., Lee, S.-C., Kim, C.-H. & Seo, S. (2011). Glycerol as a feed supplement for ruminants: in vitro fermentation characteristics and methane production. Animal Feed Science and Technology 166–167, 269274.CrossRefGoogle Scholar
Licitra, G., Hernandez, T. M. & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.CrossRefGoogle Scholar
Makkar, H. P. S. & Becker, K. (1999). Purine quantification in digesta from ruminants by spectrophotometric and HPLC methods. British Journal of Nutrition 81, 107112.CrossRefGoogle ScholarPubMed
Meale, S. J., Chaves, A. V., Ding, S., Bush, R. D. & McAllister, T. A. (2013). Effects of crude glycerin supplementation on wool production, feeding behavior, and body condition of merino ewes. Journal of Animal Science 91, 878885.CrossRefGoogle ScholarPubMed
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with reflowing in beakers or crucibles: collaborative study. Journal of AOAC International 85, 12171240.Google ScholarPubMed
National Research Council (2007). Nutrient Requirements of Small Ruminants. Washington, DC: National Academies Press.Google Scholar
Omazic, A. W., Traven, M., Bertilsson, J. & Holtenius, K. (2013). High- and low-purity glycerine supplementation to dairy cows in early lactation: effects on silage intake, milk production and metabolism. Animal 7, 14791485.CrossRefGoogle ScholarPubMed
Omazic, A. W., Kronqvist, C., Zhongyan, L., Martens, H. & Holtenius, K. (2015). The fate of glycerol entering the rumen of dairy cows and sheep. Journal of Animal Physiology and Animal Nutrition 99, 258264.CrossRefGoogle Scholar
Palmer, D. W. & Peters, T. Jr (1969). Automated determination of free amino groups in serum and plasma using 2,4,6-trinitrobenzene sulfonate. Clinical Chemistry 15, 891901.CrossRefGoogle Scholar
Parsons, G. L., Shelor, M. K. & Drouillard, J. S. (2009). Performance and carcass traits of finishing heifers fed crude glycerin. Journal of Animal Science 87, 653657.CrossRefGoogle ScholarPubMed
Porter, P. & Singleton, A. G. (1971). Digestion of carbohydrates of hay in small ruminants. British Journal of Nutrition 26, 7588.CrossRefGoogle ScholarPubMed
Rodríguez, C. A., González, J., Alvir, M. R., Reppeto, J. L., Centeno, C. & Lamrani, F. (2000). Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by feed intake. British Journal of Nutrition 84, 369376.CrossRefGoogle ScholarPubMed
Roger, V., Fonty, G., Andre, C. & Gouet, P. (1992). Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi. Current Microbiology 25, 197201.CrossRefGoogle ScholarPubMed
Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.CrossRefGoogle Scholar
San Vito, E., Lage, J. F., Ribeiro, A. F., Silva, R. A. & Berchielli, T. T. (2015). Fatty acid profile, carcass and quality traits of meat from nellore young bulls on pasture supplemented with crude glycerin. Meat Science 100, 1723.CrossRefGoogle ScholarPubMed
SAS Institute (2009). User's Guide: Statistics, Version 9.2. Cary, NC: SAS Institute, Inc.Google Scholar
Senger, C. C. D., Kozloski, G. V., Sanchez, L. M. B., Mesquita, F. R., Alves, T. P. & Castagnino, D. S. (2008). Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Animal Feed Science Technology 146, 169174.CrossRefGoogle Scholar
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. Ithaca, NY: Cornell University Press.CrossRefGoogle Scholar
Wang, C., Liu, Q., Huo, W. J., Yang, W. Z., Dong, K. H., Huang, Y. X. & Guo, G. (2009). Effects of glycerol on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. Livestock Science 121, 1520.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.CrossRefGoogle Scholar
Yang, W. Z., Beauchemin, K. A. & Rode, L. M. (2001). Effect of dietary factors on distribution and chemical composition of liquid- or solid-associated bacterial populations in the rumen of dairy cows. Journal of Animal Science 79, 27362746.CrossRefGoogle ScholarPubMed