Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-09T17:26:07.272Z Has data issue: false hasContentIssue false

Studies on soil humic acids: I. The chemical nature of humic nitrogen

Published online by Cambridge University Press:  27 March 2009

J. M. Bremner
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts

Extract

1. The chemical nature of the nitrogen in humic acid preparations isolated from 0·5M-sodium hydroxide and 0·1M-sodium pyrophosphate (pH 7·0) extracts of nine different soils has been studied by determining the amounts of acid-soluble-N, ammonia-N, amino-sugar-N and α-amino-N liberated by acid hydrolysis of the preparations and by paper chromatographic analysis of their acid hydrolysates.

2. Humic acid preparations isolated from alkali and pyrophosphate extracts of the same soil differ markedly in total nitrogen content and in nitrogen distribution after acid hydrolysis. The alkali-extracted preparations have a higher nitrogen content and a higher proportion of acid-soluble-N and α-amino-N.

3. A considerable fraction (20–60%) of the nitrogen in the preparations examined was not dissolved by acid hydrolysis. The major fraction of the nitrogen dissolved was in the form of amino-acids.

4. At least 31–48% of the nitrogen in the alkaliextracted preparations and 20–35% of the nitrogen in the pyrophosphate-extracted preparations was in the form of protein. From 3 to 10% of the nitrogen in the preparations was in the form of amino-sugars.

5. The results obtained by paper chromatographic analysis of acid hydrolysates of the preparations indicated that the protein materials in humic acids isolated from different soils by alkali or pyrophosphate are similar in their amino-acid composition. The following nineteen amino-acids were detected in every hydrolysate examined: phenylalanine, leucine, isoleucine, valine, alanine, glycine, threonine, serine, aspartic acid, glutamic acid, lysine, arginine, histidine, proline, hydroxyproline, α-amino-n-butyric acid, β-alanine, γ-aminobutyric acid and tyrosine. Two unidentified ninhydrin-reacting substances, oxidation products of cystine and methionine, and amino-sugars were also detected in every hydrolysate examined. A third unidentified ninhydrin-reacting substance and a substance provisionally identified as α,ε-diaminopimelic acid were found in some of the hydrolysates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aminoff, D. & Morgan, W. T. J. (1948). Nature, Lond., 162, 579.CrossRefGoogle Scholar
Aminoff, D. & Morgan, W. T. J. (1951). Biochem. J. 48, 74.CrossRefGoogle Scholar
Blix, G. (1948). Acta chem. scand. 2, 467.CrossRefGoogle Scholar
Bolin, D. W. & Stamberg, O. E. (1944). Industr. Engng Chem. (Anal, ed.), 16, 345.Google Scholar
Bremner, J. M. (1949 a). J. Agric. Sci. 39, 183.CrossRefGoogle Scholar
Bremner, J. M. (1949 b). J. Agric. Sci. 39, 280.CrossRefGoogle Scholar
Bremner, J. M. (1950). Biochem. J. 47, 538.CrossRefGoogle Scholar
Bremner, J. M. (1952). J. Sci. Fd Agric. 3, 497.CrossRefGoogle Scholar
Bremner, J. M. (1954). J. Soil Sci. 5, 214.CrossRefGoogle Scholar
Bremner, J. M. (1955). J. Agric. Sci. 45, 469.CrossRefGoogle Scholar
Bremner, J. M. & Lees, H. (1949). J. Agric. Sci. 39, 274.CrossRefGoogle Scholar
Bremner, J. M. & Shaw, K. (1954). J. Agric. Sci. 44, 152.CrossRefGoogle Scholar
Clarke, H. T. (1940). Org. Synth. 20, 23.Google Scholar
Consden, R., Gordon, A. H. & Martin, A. J. P. (1947). Biochem. J. 41, 590.CrossRefGoogle Scholar
Crumpler, H. R. & Dent, C. E. (1949). Nature, Lond., 164, 441.CrossRefGoogle Scholar
Dent, C. E. (1948). Biochem. J. 43, 169.CrossRefGoogle Scholar
Elson, L. A. & Morgan, W. T. J. (1933). Biochem. J. 27, 1824.CrossRefGoogle Scholar
Forsyth, W. G. C. (1947). J. Agric. Sci. 37, 132.CrossRefGoogle Scholar
Forsyth, W. G. C. & Fraser, G. K. (1947). Nature, Lond., 160, 607.CrossRefGoogle Scholar
Gillam, W. S. (1940). Soil Sci. 49, 433.CrossRefGoogle Scholar
Hobson, R. P. & Page, H. J. (1932). J. Agric. Sci. 22, 497.CrossRefGoogle Scholar
Immers, J. & Vasseur, E. (1950). Nature, Lond., 165, 898.CrossRefGoogle Scholar
Mattson, S. & Koutler-Andersson, E. (1942). LantbrHögsk. Ann. 10, 284.Google Scholar
Mattson, S. & Koutler-Andersson, E. (1943). LantbrHögsk. Ann. 11, 107.Google Scholar
Mattson, S. & Koutler-Andersson, E. (19441945). LantbrHögsk. Ann. 12, 70.Google Scholar
Partridge, S. M. (1948). Biochem. J. 42, 238.CrossRefGoogle Scholar
Pucher, G. W., Vickery, H. B. & Leavenworth, C. S. (1935). Industr. Engng Chem. (Anal, ed.), 7, 152.Google Scholar
Schollenberger, C. J. (1930). Soil Sci. 30, 307.CrossRefGoogle Scholar
Shore, A., Wilson, H. & Stueck, G. (1935). J. Biol. Chem. 112, 407.CrossRefGoogle Scholar
Tracey, M. V. (1952). Biochem. J. 52, 265.CrossRefGoogle Scholar
Van Slyke, D. D., Dillon, R. T., MacFadyen, D. A. & Hamilton, P. (1941). J. Biol. Chem. 141, 627.CrossRefGoogle Scholar
Waksman, S. A. & Iyer, K. R. N. (1932). Soil Sci. 34, 43.CrossRefGoogle Scholar
Work, E. (1949). Biochim. biophys. Acta, 3, 400.CrossRefGoogle Scholar
Wyatt, G. R. (1951). Biochem. J. 48, 584.CrossRefGoogle Scholar