Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T02:29:21.803Z Has data issue: false hasContentIssue false

Ammonia emission from slurry applied to wheat stubble and rape in North Germany

Published online by Cambridge University Press:  27 March 2009

H.-G. Bless
Affiliation:
Institute for Plant Nutrition and Soil Science, University of Kiel, Olshausenstr. 40, D–2300 Kiel I, German Federal Republic
R. Beinhauer
Affiliation:
Deutscher Wetterdienst, Agrarmeteorologische Beratungs- und Forschungsstelle Quickborn, Heinrich-Hertz-Strasse 20, D–2085 Quickborn, German Federal Republic
B. Sattelmacher
Affiliation:
Institute for Plant Nutrition and Soil Science, University of Kiel, Olshausenstr. 40, D–2300 Kiel I, German Federal Republic

Summary

In 1989 three experiments with up to three different treatments each were carried out in North Germany to determine the ammonia flux densities after the application of liquid slurry using the micrometeorological mass balance method.

In Expts 1 and 2, pig slurry was applied with a conventional surface spreader to wheat stubble. The results demonstrated the influence of meteorological conditions and that of incorporation on the extent of ammonia volatilization. In comparison to warm and windy conditions, NH3 losses decreased from 56% of the NH4-N applied to wheat stubble to 42% during a cool and rainy period. When slurry was incorporated immediately into the soil, ammonia losses were significantly reduced to 20 and 10%, respectively, of the applied NH4-N. The highest losses (67% NH4-N) were found when slurry was applied during warm weather on wheat stubble covered with chopped straw. Soil cultivation of the wheat stubble before the application of slurry diminished the ammonia emission from 42 to 28% of the NH4-N.

In Expt 3, cattle slurry was applied to rape. It was found that compared with a conventional surface spreader the ammonia volatilization was reduced from 68 to 58% of the NH4-N when an alternative distribution system consisting of drag hoses was used for the application.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amberger, A. (1990). NH3-Verluste aus der Anwendung organischer und anorganischer Dünger. VDLUFA-Schriftenreihe, Kongressband 1989 30, 103108.Google Scholar
Buijsman, E., Maas, H. F. M. & Asman, W. A. H. (1987). Anthropogenic NH3 emissions in Europe. Atmospheric Environment 21, 10091022.CrossRefGoogle Scholar
Denmead, O. T. (1983). Micrometeorological methods for measuring gaseous losses of nitrogen in the field. In Gaseous Loss of Nitrogen from Plant-Soil-Systems (Eds Freney, J. R. & Simpson, J. R.), pp. 132. The Hague: Martinus Nijhoff and Dr W. Junk.Google Scholar
Döhler, H. (1990). Ammoniakverluste nach der Flüssigmistausbringung – Erfassung und Minderungsmöglichkeiten. In Ammoniak in der Umwelt (Eds Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. & Verein Deutscher Ingenieure), pp. 41.1–41.10. Münster-Hiltrup: KTBL-Schriftenvertrieb.Google Scholar
Dohler, H. & Aldag, R. (1989). Freilandversuche zur Erfassung der Ammoniakfreisetzung bei der Giilleausbringung zu Winterweizen im Frühjahr. VDLUFA-Schriftenreihe, Kongressband 1988 28, 291302.Google Scholar
Dohler, H., Aldag, R. & Wiechmann, M. (1987). Messung der Ammoniak-Emission bei der Gülleausbringung im Freiland. In Emissionen von Ammoniak. Quellen – Verbleib – Wirkungen – Schutzmassnahmen. Arbeitsmaterialien des Bundesamtes für Ernährung und Forstwirtschaft, pp. 1314. Frankfurt: Bundesamt für Ernährung und Forstwirtschaft.Google Scholar
Ellenberg, H. (1990). Ökologische Veränderungen in Biozönosen durch Stickstoffeintrag. In Ammoniak in der Umwell (Eds Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. & Verein Deutscher Ingenieure), pp. 44.144.24. Münster-Hiltrup: KTBL-Schriftenvertrieb.Google Scholar
Hall, J. E. (1986). Soil injection research in the UK. In Efficient Land Use of Sludge and Manure (Eds Koefoed, A. D., Williams, J. H. & L'Hermite, P.), pp. 7889. London, New York: Elsevier Applied Science.Google Scholar
Hoff, J. D., Nelson, D. W. & Sutton, A. L. (1981). Ammonia volatilization from liquid swine manure applied to cropland. Journal of Environmental Quality 10, 9095.CrossRefGoogle Scholar
Holzer, U., Döhler, H. & Aldag, R. (1988). Ammoniakverluste bei Rindergülleausbringung im Modellversuch. VDLUFA–Schriftenreihe, Kongressband 1987 23, 265278.Google Scholar
Horl acher, D. & Marschner, H. (1990). Schätzrahmen zur Beurteilung von Ammoniakverlusten nach Ausbringung von Rinder gülle. Zeilschrift für Pflanzenerndhrung und Bodenkunde 153, 107115.CrossRefGoogle Scholar
Huber, I. (1990). Versuche zur Quantifizierung verschiedener Einflussfaktoren auf Ammoniakverluste nach Gülledüngung. PhD thesis, Technische Universität München.Google Scholar
Huusmans, J. & Klarenbeek, J. V. (1988). Snel mest onderwerken op bouwland nuttig. Landbouwmechanisalie 8, 2829.Google Scholar
Isermann, K. (1986). Diagnose (Symptomatik) der ‘Neuartigen Waldschäden’ aus der Sicht der Waldernahrung. In Emissionen von Ammoniak. Quellen – Verbleib – Wirkungen – Schutzmassnahmen, pp. 4546. Frankfurt: Bundesamt für Ernährung und Forstwirtschaft.Google Scholar
Kemppainen, E. (1986). Effect of cattle slurry injection on the quantity and quality of barley and grass yield. In Efficient Land Use of Sludge and Manure (Eds Koefoed, A. D., Williams, J. H. & L'Hermite, P.), pp. 6472. London, New York: Elsevier Applied Science.Google Scholar
Kolenbrander, G. J. (1981). Effect of injection of animal waste on ammonia losses by volatilisation on arable land and grassland. In Nitrogen Losses and Surface Run-off (Ed. Brogan, J. C.), pp. 425430. Brussels, Luxembourg: ECSC, EEC, EAEC.Google Scholar
Larsen, K. E. (1986). Injection of cattle slurry to barley, beet, grass and maize. In Efficient Land Use of Sludge and Manure (Eds Koefoed, A. D., Williams, J. H. & L'Hermite, P.), pp. 7377. London, New York: Elsevier Applied Science.Google Scholar
Lauer, D. A., Bouldin, D. R. & Klausner, S. D. (1976). Ammonia volatilization from dairy manure spread on the soil surface. Journal of Environmental Quality 5, 134141.CrossRefGoogle Scholar
Molloy, S. P. & Tunney, H. (1983). A laboratory study of ammonia volatilization from cattle and pig slurry. Irish Journal of Agricultural Research 22, 3745.Google Scholar
Roelofs, J. G. M., Kempers, A. J., Honduk, A. L. F. M. & Janssen, A. J. (1985). The effect of air-borne ammonium sulphate on Pinus nigra var. maritima in the Netherlands. Plant and Soil 84, 4556.CrossRefGoogle Scholar
Ryden, J. C. & McNeill, J. E. (1984). Application of the micrometeorological mass balance method to the determination of ammonia loss from grazed sward. Journal of the Science of Food and Agriculture 35, 12971310.CrossRefGoogle Scholar
Schulze, E. D., Oren, R. & Lange, O. (1989). Processes leading to forest decline: a synthesis. Ecological Studies 77, 459468.CrossRefGoogle Scholar
Thompson, R. B., Ryden, J. C. & Lockyer, D. R. (1987). Fate of nitrogen in cattle slurry following surface application or injection to grassland. Journal of Soil Science 38, 689700.CrossRefGoogle Scholar
Van Faassen, H. G., Van Der Molen, J. & Vriesema, R. (1988). Ammoniakemissie uit en vanaf de grond na in- of opbrengen van dierlijke mest. Nationaal Programma Zure Regen, project 65 (IB-project 390), Voorlopig eindverslag I. fase. Haren: Instituut voor Bodemvruchtbaarheid.Google Scholar