Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T19:13:44.183Z Has data issue: false hasContentIssue false

Effects of natamycin, hexanoic acid and Lactobacillus plantarum on fermentation, aerobic stability and in vitro digestibility of an ensiled total mixed ration containing water bamboo sheath leaves

Published online by Cambridge University Press:  09 January 2024

Xinbao Li
Affiliation:
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
Haopeng Liu
Affiliation:
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
Tongtong Dai
Affiliation:
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
Dong Dong
Affiliation:
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
Guofeng Xu
Affiliation:
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
Yushan Jia
Affiliation:
Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot Inner Mongolia 010018, China
Tao Shao*
Affiliation:
Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
*
Corresponding author: Tao Shao; Email: taoshaolan@163.com

Abstract

The work aimed to evaluate the effect of lactic acid bacteria, natamycin and hexanoic acid on the fermentation quality, aerobic stability and in vitro digestibility of total mixed ration (TMR) silages containing water bamboo sheath leaves. The treatments were as follows: (1) no additives (control, C), (2) lactic acid bacteria (L), (3) natamycin (N), (4) hexanoic acid (H), (5) lactic acid bacteria + natamycin (LN), (6) lactic acid bacteria + hexanoic acid (LH). Silos were opened and silages were evaluated to assess fermentation quality, aerobic stability and in vitro digestibility. All TMR silages were well-preserved as indicated by dominant lactic acid content, low ammonia nitrogen/total nitrogen, trace propionic acid and negligible butyric acid contents. All additives improved the fermentation quality and in vitro digestibility, evidenced by higher lactic acid/acetic acid ratio, lactic acid, acetic acid, water-soluble carbohydrate contents and lactic acid bacteria count, and lower pH, aerobic bacteria and yeast counts. The LN had the highest lactic acid, acetic acid, lactic acid/acetic acid ratio, in vitro gas production and in vitro digestibility. During aerobic exposure, the LN silage had the highest lactic acid and acetic acid contents, and the lowest pH among all TMR silages. The LN and LH prolonged aerobic stability, reaching 85.5 and 81.5 h, respectively. The LN is recommended to improve the fermentation quality, aerobic stability and in vitro digestibility of TMR prepared with water bamboo sheath leaves.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AOAC (1990) Association of Official Analytical Chemists: Official Methods of Analysis.Google Scholar
Aranega-Bou, P, de la O Leyva, M, Finiti, I, García-Agustín, P and González-Bosch, C (2014) Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science 5, 488.CrossRefGoogle ScholarPubMed
Chen, L, Guo, G, Yuan, X, Zhang, J, Li, J and Shao, T (2016) Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. Journal of the Science of Food and Agriculture 96, 16781685.CrossRefGoogle ScholarPubMed
Chen, L, Yuan, XJ, Li, JF, Wang, SR, Dong, ZH and Shao, T (2017) Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. Journal of Integrative Agriculture 16, 15921600.CrossRefGoogle Scholar
Chen, L, Yuan, X, Li, J, Dong, ZH, Wang, S, Guo, G and Shao, T (2019) Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet. Animal Production Science 59, 376383.CrossRefGoogle Scholar
Chen, J, Huang, G, Xiong, H, Qin, H, Zhang, H, Sun, Y, Dong, X, Lei, Y, Zhao, Y and Zhao, Z (2021) Effects of mixing garlic skin on fermentation quality, microbial community of high-moisture Pennisetum hydridum silage. Frontiers in Microbiology 12, 770591.CrossRefGoogle ScholarPubMed
Contreras-Govea, FE, Muck, RE, Mertens, DR and Weimer, PJ (2011) Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Animal Feed Science and Technology 163, 210.CrossRefGoogle Scholar
Dai, TT, Wang, J, Dong, D, Yin, XJ, Zong, C, Jia, YS and Shao, T (2022) Effects of brewers’ spent grains on fermentation quality, chemical composition and in vitro digestibility of mixed silage prepared with corn stalk, dried apple pomace and sweet potato vine. Italian Journal of Animal Science 21, 198207.CrossRefGoogle Scholar
Elahi, MY, Kargar, H, Dindarlou, MS, Kholif, AE, Elghandour, MMY, Rojas-Hernández, S, Odongo, NE and Salem, AZM (2016) The chemical composition and in vitro digestibility evaluation of almond tree (Prunus dulcis D. A. Webb syn. Prunus amygdalus; var. Shokoufeh) leaves versus hulls and green versus dry leaves as feed for ruminants. Agroforestry Systems 91, 773780.CrossRefGoogle Scholar
Fijałkowska, M, Pysera, B, Lipiński, K and Strusińska, D (2015) Hanges of nitrogen compounds during ensiling of high protein herbages – a review. Annals of Animal Science 15, 289305.CrossRefGoogle Scholar
Galbraith, H and Miller, TB (1973) Effect of long chain fatty acids on bacterial respiration and amino acid uptake. The Journal of Applied Bacteriology 36, 659675.CrossRefGoogle ScholarPubMed
Guo, H, Li, S, Peng, J and Ke, W (2007) Zizania latifolia Turcz. Cultivated in China. Genetic Resources and Crop Evolution 54, 12111217.CrossRefGoogle Scholar
Guo, G, Shen, C, Liu, Q, Zhang, S, Shao, T, Wang, C, Wang, Y, Xu, Q and Huo, W (2020) The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. Journal of Integrative Agriculture 19, 838847.CrossRefGoogle Scholar
Han, Z, Xu, G, Wang, S, Dai, T, Dong, D, Zong, C, Yin, X, Jia, Y and Shao, T (2022) Antimicrobial effects of four chemical additives on fermentation quality, aerobic stability, and in vitro ruminal digestibility of total mixed ration silage prepared with local food by-products. Animal Science Journal 93, e13755.CrossRefGoogle ScholarPubMed
Junior, VB, Horst, E, Guimarães, V, Junior, FM, Moraes, G, Meza, D and Galbeiro, S (2021) Effect of microbial inoculants on the chemical composition and aerobic stability of Tanzania guinea grass silages. South African Journal of Animal Science 51, 8187.Google Scholar
Kleinschmit, D, Schmidt, R and Kung, L Jr (2005) The effects of various antifungal additives on the fermentation and aerobic stability of corn silage. Journal of Dairy Science 88, 21302139.CrossRefGoogle ScholarPubMed
Konig, W, Konig, E, Elo, K, Vanhatalo, A and Jaakkola, S (2019) Effects of sodium nitrite treatment on the fermentation quality of red clover-grass silage harvested at two dry matter concentrations and inoculated with clostridia. Agricultural and Food Science 28, 155164.CrossRefGoogle Scholar
Li, JF, Tang, XY, Chen, SF, Zhao, J and Shao, T (2021) Ensiling pretreatment with two novel microbial consortia enhances bioethanol production in sterile rice straw. Bioresource Technology 339, 125507.CrossRefGoogle ScholarPubMed
McDonald, P, Henderson, AR and Heron, SJE (1991) The Biochemistry of Silage, 2nd Edn. Marlow, UK: Chalcombe Publications.Google Scholar
McEniry, J, O'Kiely, P, Clipson, NJW, Forristal, PD and Doyle, EM (2007) Manipulating the ensilage of wilted, unchopped grass through the use of additive treatments. Irish Journal of Agricultural and Food Research 46, 7791.Google Scholar
Muck, RE, Nadeau, EMG, McAllister, TA, Contreras-Govea, FE, Santos, MC and Kung, L (2018) Silage review: recent advances and future uses of silage additives. Journal of Dairy Science 101, 39804000.CrossRefGoogle ScholarPubMed
Mugabe, W, Yuan, X, Li, J, Dong, Z and Shao, T (2019) Effects of hexanoic acid, Lactobacillus plantarum and their combination on the fermentation characteristics of Napier grass. Animal Feed Science and Technology 253, 135140.CrossRefGoogle Scholar
Mugabe, W, Shao, T, Li, J, Dong, Z and Yuan, X (2020) Effect of hexanoic acid, Lactobacillus plantarum and their combination on the aerobic stability of Napier grass silage. Journal of Applied Microbiology 129, 823831.CrossRefGoogle ScholarPubMed
Nkosi, B, Meeske, R, Palic, D, Langa, T, Leeuw, K-J and Groenewald, I (2009) Effects of ensiling whole crop maize with bacterial inoculants on the fermentation, aerobic stability, and growth performance of lambs. Animal Feed Science and Technology 154, 193203.CrossRefGoogle Scholar
Pinto, S, Warth, J, Novinski, C and Schmidt, P (2020) Effects of natamycin and Lactobacillus buchneri on the fermentative process and aerobic stability of maize silage. Journal of Animal and Feed Sciences 29, 8289.CrossRefGoogle Scholar
Playne, MJ and McDonald, P (1966) The buffering constituents of herbage and of silage. Journal of the Science of Food and Agriculture 17, 264268.CrossRefGoogle Scholar
Qiu, X, Guo, G, Yuan, X and Shao, T (2014) Effects of adding acetic acid and molasses on fermentation quality and aerobic stability of total mixed ration silage prepared with hulless barley straw in Tibet. Grassland Science 60, 206213.CrossRefGoogle Scholar
Reddy, PJ, Ray, S, Sathe, GJ, Prasad, TK, Rapole, S, Panda, D and Srivastava, S (2015) Proteomics analyses of Bacillus subtilis after treatment with plumbagin, a plant-derived naphthoquinone. OMICS A Journal of Integrative Biology 19, 1223.CrossRefGoogle ScholarPubMed
Shah, AA, Qian, C, Wu, J, Liu, Z, Khan, S, Tao, Z, Zhang, X, Khan, IU and Zhong, X (2020) Effects of natamycin and Lactobacillus plantarum on the chemical composition, microbial community, and aerobic stability of hybrid Pennisetum at different temperatures. RSC Advances 10, 86928702.CrossRefGoogle ScholarPubMed
Te Welscher, YM, Ten Napel, HH, Balagué, MM, Souza, CM, Riezman, H, De Kruijff, B and Breukink, E (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. Journal of Biological Chemistry 283, 63936401.CrossRefGoogle ScholarPubMed
Van Soest, PV, Robertson, JB and Lewis, BA (1991) Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle ScholarPubMed
Wang, S, Li, J, Dong, Z, Chen, L and Shao, T (2019) Effect of microbial inoculants on the fermentation characteristics, nutritive value, and in vitro digestibility of various forages. Animal Science Journal 90, 178188.CrossRefGoogle ScholarPubMed
Wang, W, Yang, X, Li, J, Dong, Z, Zhao, J, Shao, T and Yuan, X (2022) Effects of hexanoic acid on microbial communities, fermentation, and hygienic quality of corn silages infested with toxigenic fungi. Journal of the Science of Food and Agriculture 102, 35223534.CrossRefGoogle ScholarPubMed
Wang, S, Zhang, G, Zhao, J, Dong, Z, Li, J and Shao, T (2023) Fermentation quality, aerobic stability and in vitro gas production kinetics and digestibility in total mixed ration silage treated with lactic acid bacteria inoculants and antimicrobial additives. Italian Journal of Animal Science 22, 429440.CrossRefGoogle Scholar
Wilkinson, J and Davies, D (2013) The aerobic stability of silage: key findings and recent developments. Grass and Forage Science 68, 119.CrossRefGoogle Scholar
Wuisman, Y, Hiraoka, H, Yahaya, MS, Takeda, M, Kim, W, Takahashi, T, Karita, S, Horiguchi, K, Takahashi, T and Goto, M (2006) Effects of phenylalanine fermentation byproduct and sugarcane molasses on fermentation quality and rumen degradation of whole crop barley (Hordeum vulgare L.) silage in situ. Grassland Science 52, 7379.CrossRefGoogle Scholar
Yuan, X, Wen, A, Wang, J, Li, J, Desta, ST, Undersander, DJ and Shao, T (2018) Fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silages prepared with whole-plant corn (Zea mays L.) and hulless barley (Hordeum vulgare L.) straw. Animal Production Science 58, 18601868.CrossRefGoogle Scholar
Yuan, X, Yang, X, Wang, W, Li, J, Dong, Z, Zhao, J and Shao, T (2022) The effects of natamycin and hexanoic acid on the bacterial community, mycotoxins concentrations, fermentation profiles, and aerobic stability of high moisture whole-crop corn silage. Animal Feed Science and Technology 286, 115250.CrossRefGoogle Scholar
Zhang, ZP, Song, SX, Liu, YC, Zhu, XR, Jiang, YF, Shi, LT, Jiang, JZ and Miao, MM (2021) Mixed transcriptome analysis revealed the possible interaction mechanisms between Zizania latifolia and Ustilago esculenta inducing Jiaobai stem-gall formation. International Journal of Molecular Sciences 22, 12258.CrossRefGoogle ScholarPubMed
Zhao, J, Dong, Z, Chen, L, Wang, S and Shao, T (2020) The replacement of whole-plant corn with bamboo shoot shell on the fermentation quality, chemical composition, aerobic stability and in vitro digestibility of total mixed ration silage. Animal Feed Science and Technology 259, 114348.CrossRefGoogle Scholar
Zhao, J, Tao, X, Wang, S, Li, J and Shao, T (2021a) Effect of sorbic acid and dual-purpose inoculants on the fermentation quality and aerobic stability of high dry matter rice straw silage. Journal of Applied Microbiology 130, 14561465.CrossRefGoogle ScholarPubMed
Zhao, J, Wang, S, Dong, Z, Chen, L, Li, J and Shao, T (2021b) Effect of substituting Pennisetum sinese with bamboo shoot shell (BSS) on aerobic stability and digestibility of ensiled total mixed ration. Italian Journal of Animal Science 20, 17061715.CrossRefGoogle Scholar