Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T02:27:31.975Z Has data issue: false hasContentIssue false

Environmental effects on seed oil percentage and fatty acid composition in white lupin (Lupinus albus)

Published online by Cambridge University Press:  27 March 2009

Watkin Williams
Affiliation:
Department of Agricultural Botany, University of Reading
R. McGibbon
Affiliation:
Department of Agricultural Botany, University of Reading

Summary

The effects of temperature, light intensity and nitrogen supply on the amount and fatty acid composition of the seed oil in Lupinus albus has been investigated. The percentage seed oil was reduced and its degree of saturation increased at higher temperatures. High temperatures during the dark period caused a reduction in percentage oil only when combined with day temperature of 20 °C, indicating a highly specific interaction between day and night temperatures. Shading reduced oil content, an effect which may determine response to population density and the optimal phenotype for high-oil cultivars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appelqvist, L. A. (1975). Storage and membrane lipids in oilseeds. In Recent Advances in the Chemistry and Biochemistry of Plant Lipids. Phytochemical Society Symposia Series 12, pp. 247286. London: Academic Press.Google Scholar
Barker, C. & Hilditch, T. P. (1950). The influence of environment upon the composition of sunflower seed oils. I. Individual varieties of sunflower grown in different parts of Africa. Journal of the Science of Food and Agriculture 1, 119121.CrossRefGoogle Scholar
Bridge, R. E., Crossley, A. & Hilditch, T. P. (1951). The influence of environment upon composition of sunflower oils. III. Oils from sunflower seeds grown in different regions in Australia. Journal of the Science of Food and Agriculture 2, 472476.CrossRefGoogle Scholar
Christie, W. W. (1973). Lipid Analysis. London: Pergamon Press.Google Scholar
Conway, T. F. & Earle, F. R. (1963). Nuclear magnetic resonance for determining oil content of seeds. Journal of the American Oil Chemists' Society 40, 265268.CrossRefGoogle Scholar
Dybing, C. D. & Zimmerman, D. C. (1966). Fatty acid composition in maturing flax seeds as influenced by the environment. Plant Physiology 41, 14651470.CrossRefGoogle Scholar
Fehr, W. R., Thorne, J. C. & Hammond, E. G. (1971). Relationship of fatty acid formation and chlorophyll content on soybean seed. Crop Science 11, 211213.CrossRefGoogle Scholar
McNair, J. B. (1945). Plant fats in relation to environment and evolution. Botanical Review 11, 159.CrossRefGoogle Scholar
Neumann, P. (1941). Über den Fettstoffwechsel reifender und keimender Leguminosensamen. Biochemische Zeitschrift 308, 141174.Google Scholar
Schuster, W. (1971). Der Einfluss der Umwelt auf die Fettzusammensetzung der Sojabohne. Fette und Seifen Anstrichsmittel 73, 305314.CrossRefGoogle Scholar
Thies, W. (1971 a). Schnelle und einfache Analysen der Fettsäurezusammensetzung in einzelnen Raps-Kotyledonen. Zeitschrift für Pflanzenzüchtung 65, 181202.Google Scholar
Thies, W. (1971 b). Der Einfluss der Chloroplasten auf die Bilding von ungesättligten Fettsäuren in reifenden Rapssamen. Fette und Seifen Anstrichsmittel 73, 710716.CrossRefGoogle Scholar