Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T22:16:05.951Z Has data issue: false hasContentIssue false

Transient behaviour of a Galton–Watson process with a large number of types

Published online by Cambridge University Press:  14 July 2016

Christine Reder*
Affiliation:
Université de Bordeaux 1
*
Postal address: Institut de Mathématiques, Université de Bordeaux 1, 351 Cours de la Libération, F-33405 Talence Cedex, France. Email address: christine.reder@math.u-bordeaux.fr

Abstract

Modelling the distribution of mutations of mitochondrial DNA in exponentially growing cell cultures leads to the study of a multitype Galton–Watson process during its transient phase. The number of types corresponds to the number of mtDNA per cell and may be considered as large. By taking advantage of this fact we prove that the stochastic process is deterministic-like on the set of nonextinction. On this set almost all trajectories are well approximated by the unique solution of a partial differential problem. This result allows also the comparison of trajectories corresponding to different modelling assumptions, for instance different values of the number of types.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2003 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandersson, M. (2001). On the existence of the stable birth-type distribution in a general branching process cell cycle model with unequal cell division. J. Appl. Prob. 368, 685695.CrossRefGoogle Scholar
Athreya, K. B., and Ney, P. E. (1972). Branching Processes (Die Grundlehren der Mathematischen Wissenschaften 196). Springer, Berlin.Google Scholar
Birky, C.W. (2001). The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Ann. Rev. Genet. 35, 125148.CrossRefGoogle ScholarPubMed
Brézis, H. (1999). Analyse Fonctionnelle. Théorie et Applications, 2nd edn. Dunod, Paris.Google Scholar
Dyakonova, E. E. (2000). On a multitype Galton—Watson process with state-dependent immigration. J. Math. Sci. 99, 12441249.CrossRefGoogle Scholar
Fleischmann, K., and Vatutin, V. A. (2000). Deviations from typical multi-type proportions in critical multi-type Galton—Watson processes. Theory Prob. Appl. 45, 2340.CrossRefGoogle Scholar
Harris, T. E. (1963). The Theory of Branching Processes (Die Grundlehren der mathematischen Wissenschaften 119). Springer, Berlin.Google Scholar
Howell, N. et al. (1992). Mitochondrial gene segregation in mammals: is the bottleneck always narrow? Hum. Genet. 90, 117120.CrossRefGoogle ScholarPubMed
Jacobs, H. T., Lehtinen, S. K., and Spelbrink, J. N. (2000). No sex please, we're mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. Bioessays 22, 564572.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Jagers, P., and Nerman, O. (1996). The asymptotic composition of supercritical, multi-type branching populations. In Séminaire de Probabilités XXX (Lecture Notes in Math. 1626), Springer, Berlin, pp. 40-54.CrossRefGoogle Scholar
Jones, O. D. (1997). On the convergence of multi-type branching processes with varying environments. Ann. Appl. Prob. 7, 772801.CrossRefGoogle Scholar
Jones, O. D. (1999). Continuity for multi-type branching processes with varying environments. J. Appl. Prob. 36, 139145.CrossRefGoogle Scholar
Klebaner, F. C. (1989). Geometric growth in near-supercritical population size dependent multitype Galton—Watson processes. Ann. Prob. 17, 14661477.CrossRefGoogle Scholar
Lehtinen, S. K. et al. (2000). Genotypic stability, segregation and selection in heteroplasmic human cell lines containing np 3243 mutated mtDNA. Genetics 154, 363380.CrossRefGoogle Scholar
Margineantu, D. H. et al. (2002). Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion 1, 425435.CrossRefGoogle ScholarPubMed
Nelson, E. (1977). Internal set theory. Bull. Amer. Math. Soc. 83, 11651198.CrossRefGoogle Scholar
Nelson, E. (1987). Radically Elementary Probability Theory (Ann. Math. Studies 117). Princeton University Press.Google Scholar
Petkovsek, M., Wilf, H. S., and Zeilberger, D. (1996). A = B. A. K. Peters, Wellesley, MA.CrossRefGoogle Scholar
Petruzzella, V. et al. (1994). Extremely high level of mutant mtDNAs co-localize with cytochrome c oxidase-negative ragged-red fibers in patients harboring a point mutation at nt 3243. Hum. Molec. Genet. 3, 449454.CrossRefGoogle ScholarPubMed
Reder, C. (2001). Mutated mtDNA distribution in exponentially growing cell cultures and how the segregation rate is increased by the mitochondrial compartments. Acta Biotheoretica 49, 235245.CrossRefGoogle ScholarPubMed
Reder, C. (2001). Mutated mtDNA segregation in cell cultures: proof of some results. Mathématiques Appliquées de Bordeaux, UMR 5466, Internal Report U-01-21.Google Scholar
Smirnov, V. I. (1964). A Course of Higher Mathematics, Vol. 4. Pergamon Press, Oxford.Google Scholar
Szegö, G. (1939). Orthogonal Polynomials. American Mathematical Society, New York.Google Scholar
Wallace, D. (1997). Mitochondrial DNA in aging and disease. Sci. Amer. 277, 4046.CrossRefGoogle ScholarPubMed