Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-16T15:33:43.066Z Has data issue: false hasContentIssue false

The stochastic filtering problem: a brief historical account

Published online by Cambridge University Press:  30 March 2016

Dan Crisan*
Affiliation:
Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK. Email address: d.crisan@imperial.ac.uk.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Onwards from the mid-twentieth century, the stochastic filtering problem has caught the attention of thousands of mathematicians, engineers, statisticians, and computer scientists. Its applications span the whole spectrum of human endeavour, including satellite tracking, credit risk estimation, human genome analysis, and speech recognition. Stochastic filtering has engendered a surprising number of mathematical techniques for its treatment and has played an important role in the development of new research areas, including stochastic partial differential equations, stochastic geometry, rough paths theory, and Malliavin calculus. It also spearheaded research in areas of classical mathematics, such as Lie algebras, control theory, and information theory. The aim of this paper is to give a brief historical account of the subject concentrating on the continuous-time framework.

Type
Part 2. The 2014 AP lectures
Copyright
Copyright © Applied Probability Trust 2014 

References

Bain, A., and Crisan, D. (2009). Fundamentals of Stochastic Filtering (Stoch. Modelling Appl. Prob. 60). Springer, New York.Google Scholar
Benevs, V. E. (1981). Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5, 6592.Google Scholar
Benevs, V. E. (1985). New exact nonlinear filters with large Lie algebras. Systems Control Lett. 5, 217221.Google Scholar
Bharucha-Reid, A. T. (1963). Review of ‘Conditional Markov processes’. Available at http://www.ams.org/mathscinet/pdf/137157.pdf.Google Scholar
Boel, R., Varaiya, P., and Wong, E. (1975). Martingales on jump processes. II. Applications. SIAM J. Control 13, 10221061.Google Scholar
Brémaud, P. (1976). La méthode des semi-martingales en filtrage quand l'observation est un processus ponctuel marque. In Séminaire de Probabilités, X (Lecture Notes Math. 511), Springer, Berlin, pp. 118.Google Scholar
Brémaud, P., and Jacod, J. (1977). Processus ponctuels et martingales: résultats récents sur la modélisation et le filtrage. Adv. Appl. Prob. 9, 362416.Google Scholar
Brockett, R. W. (1981). Nonlinear systems and nonlinear estimation theory. In Stochastic Systems: The Mathematics of Filtering and Identification and Applications (Les Arcs, 1980; NATO Adv. Study Inst. Ser. C: Math. Phys. Sci. 78), Reidel, Dordrecht, pp. 441477.Google Scholar
Brockett, R. W. (1984). Nonlinear control theory and differential geometry. In Proceedings of the International Congress of Mathematicians (Warsaw, 1983), eds Ciesielski, Z. and Olech, C., PWN, Warsaw, pp. 13571368.Google Scholar
Brockett, R. W., and Clark, J. M. C. (1980). The geometry of the conditional density equation. In Analysis and Optimisation of Stochastic Systems (Proc. Internat. Conf. Uni. Oxford, 1978), Academic Press, London, pp. 299309.Google Scholar
Bucy, R. S. (1959). Optimum finite time filters for a special nonstationary class of inputs. Tech. Rep. BBD 600, Applied Physics Laboratory, Johns Hopkins University.Google Scholar
Bucy, R. S. (1965). Nonlinear filtering. IEEE Trans. Automatic Control 10, 198.Google Scholar
Bucy, R. S., and Joseph, P. D. (1987). Filtering for Stochastic Processes with Applications to Guidance, 2nd edn. Chelsea, New York.Google Scholar
Clark, J. M. C. (1978). The design of robust approximations to the stochastic differential equations of nonlinear filtering. In Communication Systems and Random Process Theory (Proc. 2nd NATO Adv. Study Inst., Darlington, 1977; NATO Adv. Study Inst. Ser. E, Appl. Sci. 25), ed. Skwirzynski, J. K., Sijthoff & Noordhoff, Alphen aan den Rijn, pp. 721734.Google Scholar
Crisan, D., and Rozovskii, B. (eds) (2011). The Oxford Handbook of Nonlinear Filtering. Oxford University Press.Google Scholar
Davis, M. H. A. (1973). Non-linear filtering with point process observation. Res. Rep. 73/12, Department of Computing and Control, Imperial College London.Google Scholar
Davis, M. H. A. (1980). On a multiplicative functional transformation arising in nonlinear filtering theory. Z. Wahrscheinlichkeitsth. 54, 125139.CrossRefGoogle Scholar
Davis, M. H. A. (1981). Pathwise nonlinear filtering. In Stochastic Systems: The Mathematics of Filtering and Identification and Applications (Les Arcs, 1980; NATO Adv. Study Inst. Ser. C: Math. Phys. Sci. 78), eds Hazewinkel, M. and Willems, J. C., Reidel, Dordrecht, pp. 505528.Google Scholar
Davis, M. H. A. (1982). A pathwise solution of the equations of nonlinear filtering. Theory Prob. Appl. 27, 167175.CrossRefGoogle Scholar
Doob, J. L. (1953). Stochastic Processes. John Wiley, New York.Google Scholar
Duncan, T. E. (1970). Likelihood functions for stochastic signals in white noise. Inf. Control 16, 303310.Google Scholar
Frost, P., and Kailath, T. (1971). An innovations approach to least-squares estimation. Part III. Nonlinear estimation in white Gaussian noise. IEEE Trans. Automatic Control 16, 217226.Google Scholar
Fujisaki, M., Kallianpur, G., and Kunita, H. (1972). Stochastic differential equations for the non linear filtering problem. Osaka J. Math. 9, 1940.Google Scholar
Grigelionis, B. I. (1972). Stochastic equations for the nonlinear filtering of random processes. Litovsk. Mat. Sb. 12, 3751, 233 (in Russian).Google Scholar
Hazewinkel, M., and Willems, J. C. (eds) (1981). Stochastic Systems: The Mathematics of Filtering and Identification and Applications (Les Arcs, 1980; NATO Adv. Study Inst. Ser. C: Math. Phys. Sci. 78), Reidel, Dordrecht.Google Scholar
Kailath, T. (1968). An innovations approach to least-squares estimation. I. Linear filtering in additive white noise. IEEE Trans. Automatic Control 13, 646655.Google Scholar
Kallianpur, G. (1985). White noise theory of filtering—Some robustness and consistency results. In Stochastic Differential Systems (Marseille-Luminy, 1984; Lecture Notes Control Inform. Sci. 69), Springer, Berlin, pp. 217223.Google Scholar
Kallianpur, G., and Karandikar, R. L. (1984). The Markov property of the filter in the finitely additive white noise approach to nonlinear filtering. Stochastics 13, 177198.Google Scholar
Kallianpur, G., and Karandikar, R. L. (1984). Measure-valued equations for the optimum filter in finitely additive nonlinear filtering theory. Z. Wahrscheinlichkeitsth. 66, 117.Google Scholar
Kallianpur, G., and Karandikar, R. L. (1985). A finitely additive white noise approach to nonlinear filtering: a brief survey. In Multivariate Analysis VI (Pittsburgh, PA, 1983), North-Holland, Amsterdam, pp. 335344.Google Scholar
Kallianpur, G., and Karandikar, R. L. (1985). White noise calculus and nonlinear filtering theory. Ann. Prob. 13, 10331107.Google Scholar
Kallianpur, G., and Karandikar, R. L. (1988). White Noise Theory of Prediction, Filtering and Smoothing (Stoch. Monogr. 3). Gordon & Breach, New York.Google Scholar
Kallianpur, G., and Striebel, C. (1968). Estimation of stochastic systems: arbitrary system process with additive white noise observation errors. Ann. Math. Statist. 39, 785801.Google Scholar
Kallianpur, G., and Striebel, C. (1969). Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes. Theory Prob. Appl. 14, 567594.Google Scholar
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 3545.Google Scholar
Kalman, R. E., and Bucy, R. S. (1961). New results in linear filtering and prediction theory. J. Basic Eng. 83, 95108.Google Scholar
Kolmogorov, A. N. (1939). Sur l'interpolation et extrapolation des suites stationnaires. C. R. Acad. Sci. Paris 208, 20432045.Google Scholar
Kolmogorov, A. N. (1941). Interpolation and extrapolation of stationary random sequences. Izv. Akad. Nauk. SSSR Ser. Math. 5, 314.Google Scholar
Krein, M. (1945). On a generalization of some investigations of G. Szegö, V. Smirnoff and A. Kolmogoroff. C. R. (Doklady) Adad. Sci. URSS (N.S.) 46, 9194.Google Scholar
Krein, M. (1945). On a problem of extrapolation of A. N. Kolmogoroff. C. R. (Doklady) Akad. Sci. URSS (N.S.) 46, 306309.Google Scholar
Krylov, N. V. and Rozovskivi, B. L. (1977). The Cauchy problem for linear stochastic partial differential equations. Izv. Akad. Nauk SSSR Ser. Mat. 41, 13291347, 1448.Google Scholar
Krylov, N. V. and Rozovskivi, B. L. (1978). Conditional distributions of diffusion processes. Izv. Akad. Nauk SSSR Ser. Mat. 42, 356378, 470.Google Scholar
Kushner, H. (1963). On the optimal control of systems with arbitrary distribution of initial position and noise corrupted observation. Tech. Rep. JA2123, Massachusetts Institute of Technology.Google Scholar
Kushner, H. (1964). On the differential equations satisfied by conditional probability densities of Markov processes, with applications. J. Soc. Indust. Appl. Math. Ser. A Control 2, 106119.CrossRefGoogle Scholar
Kushner, H. J. (1967). Dynamical equations for optimal nonlinear filtering. J. Differential Equat. 3, 179190.CrossRefGoogle Scholar
Mortensen, R. E. (1966). Stochastic optimal control with noisy observations. Internat. J. Control (1) 4, 455464.Google Scholar
Pardoux, E. (1975). Equations aux dérivées partielles stochastiques non linéarires monotones. , Université Paris XI, Orsay.Google Scholar
Pardoux, E. (1979). Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3, 127167.Google Scholar
Pardoux, E. (1991). Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. In École d'Eté de Probabilités de Saint-Flour XIX—1989 (Lecture Notes Math. 1464) Springer, Berlin, pp. 67163.Google Scholar
Segall, A., Davis, M. H. A., and Kailath, T. (1975). Non-linear filtering with counting observations. IEEE Trans. Inf. Theory 21, 143149.Google Scholar
Shiryaev, A. N. (1966). On stochastic equations in the theory of conditional Markov processes. Theory Prob. Appl. 11, 79184.Google Scholar
Snyder, D. L. (1972). Filtering and detection for doubly stochastic Poisson processes. IEEE Trans. Inf. Theory 18, 91102.CrossRefGoogle Scholar
Stratonovich, R. L. (1959). On the theory of optimal non-linear filtration of random functions. Theory Prob. Appl. 4, 223225.Google Scholar
Stratonovich, R. L. (1960). Application of the Markov processes theory to optimum filtration of signals. Radio Eng. Electron. Phys. 5, 119.Google Scholar
Stratonovich, R. L. (1960). Conditional Markov processes. Theory Prob. Appl. 5, 156178.Google Scholar
Stratonovich, R. L. (1968). Conditional Markov Processes and Their Application to the Theory of Optimal Control (Modern Analytic Comput. Methods Sci. Math. 7). Elsevier, New York.Google Scholar
Van Schuppen, J. H. (1977). Filtering, prediction and smoothing for counting process observations, a martingale approach. SIAM J. Appl. Math. 32, 552570.CrossRefGoogle Scholar
Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications. MIT Press, Cambridge, MA.Google Scholar
Wiener, N. (1956). I Am a Mathematician. Doubleday, Garden City, NY.Google Scholar
Wong, E. (1972). Martingale theory and applications to stochastic problems in dynamical systems. Res. Rep. 72/19, Department of Computing and Control, Imperial College London.Google Scholar
Wonham, W. M. (1965). Some applications of stochastic differential equations to optimal nonlinear filtering. J. Soc. Indust. Appl. Math. Ser. A Control 2, 347369.Google Scholar
Yau, S.-T., and Yau, S. S. T. (1998). Finite-dimensional filters with nonlinear drift. XI. Explicit solution of the generalized Kolmogorov equation in Brockett-Mitter program. Adv. Math. 140, 156189.Google Scholar
Zakai, M. (1969). On the optimal filtering of diffusion processes. Z. Wahrscheinlichkeitsth. 11, 230243.Google Scholar