Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-21T15:24:28.263Z Has data issue: false hasContentIssue false

378 Regulation of renal function by the peroxisome proliferator-activated receptor-alpha: A novel target for treating hypertension

Published online by Cambridge University Press:  24 April 2023

Mark D Hatcher
Affiliation:
Georgetown-Howard Universities
Kathryn Sandberg
Affiliation:
Georgetown University
Dexter Lee
Affiliation:
Howard University
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: Approximately 37 million people in the U.S. have chronic kidney disease, which is a major risk factor for cardiovascular and end stage renal diseases. PPAR-αknockout (KO) mice exhibit increased renal inflammation and blood pressure. In this study, we investigated the role of PPAR-αin renal function in a mouse model of hypertension. METHODS/STUDY POPULATION: Male 4-month-old wild type (WT) and PPAR-αKO mice were instrumented with radio transmitters by artery canulation (Data Science Intl). This method minimizes stress and artifacts by avoiding the use of tethering, restraining, or anesthetizing the mice during data sampling. After recovery from surgery, we continuously measured mean arterial pressure (MAP) via radio telemetry in conscious ambulatory mice. After baseline MAP was established, vehicle (Veh; saline) or angiotensin II (Ang II) were infused using an osmotic minipump at a slow pressor dose (400 ng/kg/min) for 12 days. On day 12, we injected an intravenous bolus of fluorescin-sinistrin (3.74µl/g body weight) and collected 8 blood samples (20µl/sample) over 75 minutes to enable calculation of the glomerular filtration rate (GFR) using [GFR = I/(A/α+ B/ß)]. RESULTS/ANTICIPATED RESULTS: Similar to our prior observations, no significant (ns) differences in baseline MAP were observed between WT and PPAR-αKO mice [(mmHg): WT (n=6), 111 ± 20 vs. PPAR-αKO (n=6), 113 ± 10; ns] whereas after 12 days of the slow pressor effect of Ang II, MAP was increased in both strains [(mmHg): WT (n=8), 138 ± 11# vs. PPAR-αKO (n=8) , 156 ± 16#; #p DISCUSSION/SIGNIFICANCE: PPAR-αprotects mice from worsening hypertension and is critical to preserving GFR during normotensive conditions. Ongoing studies are further investigating how PPAR-αregulates renal function. These finding suggest therapeutics designed to increase PPAR-αactivity could have clinical benefit in chronic kidney disease.

Type
Precision Medicine/Health
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2023. The Association for Clinical and Translational Science