Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-26T13:38:21.050Z Has data issue: false hasContentIssue false

79664 Complement Driven Auto-Reactive Antibodies in Lung Transplantation

Published online by Cambridge University Press:  30 March 2021

Alexander McQuiston
Affiliation:
Medical University of South Carolina
Changhai Li
Affiliation:
Medical University of South Carolina
Kunal Patel
Affiliation:
Medical University of South Carolina
Zhenxiao Tu
Affiliation:
Medical University of South Carolina
Dianna Nord
Affiliation:
University of Florida
Satish Nadig
Affiliation:
Medical University of South Carolina
Stephen Tomlinson
Affiliation:
Medical University of South Carolina
Carl Atkinson
Affiliation:
University of Florida
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

ABSTRACT IMPACT: Our work unveils a novel mechanism of ischemia repurfusion injury driven by pre-existing autoimmunity following lung transplant and a potential therapeutic strategy for blocking complement-dependent injury thereby reducing risk of lung transplant rejection. OBJECTIVES/GOALS: Our goal was to determine if pre-existing autoimmune autoantibodies, such as those resulting from cigarette smoke (CS), contribute to graft rejection in lung transplantation (LTx) and if autoreactive-mediated graft injury is complement-dependent. METHODS/STUDY POPULATION: For in vivo experiments, we utilized our emphysema mouse model. Briefly, eight-week-old C57BL/6J mice are exposed to 3R4F reference cigarette smoke 5 hours per day, 5 days a week for 6 months. Upon completion, cigarette smoked (CS) mice and control (NS) mice received syngeneic orthotopic left-lung transplant from age-matched C57BL/6J donors. To determine if pre-existing autoreactivity mediated graft injury was complement-dependent we treated CS-LTx mice with a novel, bifunctional complement inhibitor. Autoantibody levels were measured by ELISA and lung injury was assessed by blinded histopathological analyses. Complement inhibition was verified by immunofluorescence. RESULTS/ANTICIPATED RESULTS: We found that CS-exposure leads to production of autoreactive antibodies towards extracellular matrix (ECM) components and contributes to graft injury. Interestingly, LTx into CS exposed mice further increased de-novo ECM autoantibody development. Lastly, treatment with our novel, bifunctional complement inhibitor blocked autoantibody spreading and significantly reduced graft rejection. DISCUSSION/SIGNIFICANCE OF FINDINGS: These data demonstrate that smoking induces pre-LTx autoreactivity to ECM proteins that promotes graft injury following LTx. Furthermore, complement inhibition reduces autoantibody production and protects the graft from injury.

Type
Basic Science
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2021