Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-14T23:27:55.889Z Has data issue: false hasContentIssue false

444. The production of antibiotics by streptococci

Published online by Cambridge University Press:  01 June 2009

A. Hirsch
Affiliation:
National Institute for Research in Dairying, University of Reading
Dorothy M. Wheater
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

From raw and pasteurized milk and cheese, human, bovine and pig faeces, human nose and throat swabs, 553 pure cultures were isolated and tested by a cross-streak technique on agar. From the same sources, but without isolation and purification of the cultures, 510 samples were also tested by spotting individual colonies with a test-organism culture of Streptococcus agalactiae. A further 8016 samples were tested after enrichment by a quick assay using Str. cremoris as the test organism. The samples examined failed to reveal antibiotic producing streptococci with the exception of some strains of Str. lactis which produced nisin.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Swithinbank, H. & Newman, G. (1903). Bacteriology of Milk, p. 140. London: John Murray.Google Scholar
(2)Rogers, L. A. (1928). J. Bact. 16, 321.CrossRefGoogle Scholar
(3)Whitehead, H. R. (1933). Biochem. J. 27, 1793.CrossRefGoogle Scholar
(4)Meanwell, L. J. (1943). Abstr. Proc. Soc. Agric. Bact. p. 19.Google Scholar
(5)Oxford, A. E. (1944). Biochem. J. 38, 178.CrossRefGoogle Scholar
(6)Mattick, A. T. R. & Hirsch, A. (1947). Lancet, ii, 5.CrossRefGoogle Scholar
(7)Florey, H. W., Chain, E., Heatley, N. G., Jennings, M. A., Sanders, A. G., Abraham, E. R. & Florey, M. E. (1949). Antibiotics. London: Oxford Medical Publications.Google ScholarPubMed
(8)Boehm, M. M. & Kopaczewski, W. (1929). Protoplasma, 6, 302.CrossRefGoogle Scholar
(9)Su, T. L. (1948). Brit. J. exp. Path. 29, 466.Google Scholar
(10)Thompson, R. & Johnson, A. (1947). J. Bact. 54, 53.Google Scholar
(11)Fehleisen, (1883). After Pawlowsky (1887).Google Scholar
(12)Emmerich, R. (1886). After 1887 reference (13).Google Scholar
(13)Emmerich, R. (1887). Arch. Hyg., Berl., 6, 442.Google Scholar
(14)Pawlowsky, A. D. (1887). Arch. path. Anal. Physiol. 108, 494.Google Scholar
(15)Zinsser, H. (1927). A Text-book of Bacteriology, p. 27. New York: D. Appleton and Co.Google Scholar
(16)Coley, W. B. (1896). J. med. Sci. 112, 251.CrossRefGoogle Scholar
(17)Fleming, A. (1946). Penicillin: Its Practical Applications. London: Butterworth.Google Scholar
(18)Fuller, A. T. & Maxted, W. R. (1939). Brit. J. exp. Path. 20, 177.Google Scholar
(19)Hawk, (1938). Practical Physiological Chemistry, p. 204. London: Churchill.Google Scholar
(20)Heatley, N. G. & Florey, H. W. (1947). Brit. J. exp. Path. 27, 378.Google Scholar
(21)Cox, G. A. (1934). N.Z. J. of Agric. 49, 231.Google Scholar
(22)Hirsch, A. (1950). J. gen. Microbiol. 4, 70.CrossRefGoogle Scholar
(23)Kelner, A. (1948). J. Bact. 56, 157.CrossRefGoogle Scholar
(24)Thompson, R. & Shibuya, M. (1946). J. Bact. 51, 671.CrossRefGoogle Scholar
(25)Sherwood, N. P. (1950). Private communication.Google Scholar
(26)Sherwood, N. P., Russell, B. E., Jay, A. R. & Bowman, K. (1949). J. infect. Dis. 84, 88.CrossRefGoogle Scholar
(27)Bail, O. (1929). Z. ImmunForsch. 60, 1.Google Scholar
(28)Von Wikullil, L. (1932). Zbl. Bakt. (I), 126, 488.Google Scholar