Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-09T06:28:11.266Z Has data issue: false hasContentIssue false

Metabolism of [U-14C]D-fructose by the isolated perfused udder

Published online by Cambridge University Press:  01 June 2009

R. Verbeke
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium
Anne-Marie Massart-Leën
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium
G. Peeters
Affiliation:
Physiological Department of the Veterinary College, University of Ghent, Belgium

Summary

A lactating mammary gland of a sheep and a goat were perfused for several hours in the presence of [U-14C]D-fructose and received adequate quantities of acetate, glucose and amino acids.

In both experiments, there was a small incorporation of 14C in the expired CO2. Smaller radioactivities were measured in milk citric acid, lactose, casein and fat, the activities decreasing in that order. The specific activities of the amino acids from one casein hydrolysate were determined. The highest radioactivities were found in alanine and serine; methionine, glutamic acid and aspartic acid showed a smaller incorporation of 14C.

These results indicate that fructose is metabolized only to a very limited extent by the mammary gland. The relative distribution of 14C observed among the different substances isolated may be explained by a direct splitting of fructose into two C3-fragments, glycolysis and metabolism via the Krebs cycle.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Black, A. L. & Kleiber, M. (1962). In Symposium on use of Radioisotopes in Animal Biology and Medical Sciences, vol. 2, p. 137 (ed. Fried, M.). London and New York: Academic Press.Google Scholar
Carroll, K. K. (1961). J. Lipid Res. 2, 135.CrossRefGoogle Scholar
Hardwick, D. C. & Linzell, J. L. (1960). J. Physiol., Lond. 154, 547.CrossRefGoogle Scholar
Hers, H. G. (1955). J. biol. Chem. 214, 373.CrossRefGoogle Scholar
Hers, H. G. & Kusaka, T. (1953). Biochim. biophys. Acta 11, 427.CrossRefGoogle Scholar
Heyndrick, G. V. & Peeters, G. J. (1960). Biochem. J. 75, 1.CrossRefGoogle Scholar
Lascelles, A. K., Hardwick, D. C., Linzell, J. L. & Mepham, T. B. (1964). Biochem. J. 92, 36.CrossRefGoogle Scholar
Luick, J. R., Kleiber, M. & Lucas, J. M. (1959). Am. J. Physiol. 197, 677.CrossRefGoogle Scholar
Luick, J. R., Kleiber, M., Lucas, J. M. & Rogers, T. A. (1957). Am. J. Physiol. 191, 90.CrossRefGoogle Scholar
Meister, A. (1965). In Biochemistry of the Amino Acids, Vol. II. New York, London: Academic Press.Google Scholar
Muntz, J. A. (1968). J. biol. Chem. 243, 2788.CrossRefGoogle Scholar
Somogyi, M. (1945). J. biol. Chem. 160, 61.CrossRefGoogle Scholar
Verbeke, R., Feteanu, A. & Peeters, G. (1967). Archs int. Physiol. Biochim. 75, 675.Google Scholar
Verbeke, R., Lauryssens, M., Peeters, G. & James, A. T. (1959). Biochem. J. 73, 24.CrossRefGoogle Scholar
Verbeke, R., Peeters, G., Massart-Leën, A. M. & Cocquyt, G. (1968). Biochem. J. 106, 719.CrossRefGoogle Scholar
Verbeke, R., Simeonov, S. & Peeters, G. (1967). Archs int. Physiol. Biochim. 75, 658.Google Scholar
Walborg, E. F., Christensson, L. & Gardell, S. (1965). Analyt. Biochem. 13, 177.CrossRefGoogle Scholar
Wood, H. G., Joffe, S., Gillespie, R., Hansen, R. G. & Hardenbrook, H. (1958). J. biol. Chem. 233, 1264.CrossRefGoogle Scholar