Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T17:24:23.606Z Has data issue: false hasContentIssue false

Ultrafiltration with a microfiltration membrane of acid skimmed and fat-enriched milk coagula: hydrodynamic, microscopic and rheological approaches

Published online by Cambridge University Press:  01 June 2009

Hamadi Attia
Affiliation:
Université de Montpellier II, 34095 Montpellier Cedex 5, France
Michel Bennasar
Affiliation:
Université de Montpellier II, 34095 Montpellier Cedex 5, France
Alain Lagaude
Affiliation:
Université de Montpellier II, 34095 Montpellier Cedex 5, France
Bernard Hugodot
Affiliation:
Université de Montpellier II, 34095 Montpellier Cedex 5, France
Jacques Rouviere
Affiliation:
Université de Montpellier II, 34095 Montpellier Cedex 5, France
Blas Tarodo De La Fuente
Affiliation:
Université de Montpellier II, 34095 Montpellier Cedex 5, France

Summary

The effect of acidification method (microbiological with or without renneting, HCl addition) on mass transfer, fouling structure and the rheology of the retentate was studied in the ultrafiltration of skim milk coagula using a mineral microfiltration membrane. The increase in fouling with time appeared to determine permeate flow rates, which were higher in biological coagula, and the protein retention rates which were higher in chemical coagula. Fouling was investigated using scanning electron microscopy. The rheological study showed that at the same total solids, biological coagula were more viscous than chemical coagula. The initial coagula (total solids 97 g/kg) all displayed pseudoplastic behaviour at low shear velocities and Newtonian behaviour at high velocities. Ultrafiltration of fat-enriched milk coagulum to a dry weight corresponding to a soft cheese (total solids 334 g/kg; fat in total solids 60%) gave satisfactory permeate flow rates and protein retention rates. Performance was related to the composition of the product, the hydrodynamic parameters used and the resulting fouling. The rheological study showed that the initial coagulum behaved as a pseudoplastic body at low shear rate and for higher velocities as a Newtonian liquid. The concentrated retenate behaved as an ideal viscoplastic body (Bingham body).

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aimar, P. 1987 [Mechanisms of Mass Transfer in Ultrafiltration.] Thesis, University P. Sabatier, ToulouseGoogle Scholar
Association Française De Normalisation 1986 [Determination of fat content (Gerber Method).] In Contrôle de la Qualité des Produits Laitiers, pp. 167176. Paris: AfnorGoogle Scholar
Attia, H., Bennasar, M. & Tarodo De La Fuente, B. 1988 [Ultrafiltration on a mineral membrane of biologically or chemically acidified milks (with varying pH) and of lactic coagulum.] Lait 68 1332CrossRefGoogle Scholar
Attia, H., Bennasar, M. & Tarodo De La Fuente, B. 1991 Study of the fouling of inorganic membranes by acidified milks using scanning electron microscopy and electrophoresis. I. Membrane with pore diameter 0·2 μm. Journal of Dairy Research 58 3950CrossRefGoogle Scholar
Baer, A., Oroz, M. & Blanc, B. 1976 Serological studies on heat-induced interactions of α-lactalbumin and milk proteins. Journal of Dairy Research 43 419432CrossRefGoogle Scholar
Bennasar, M. & Tarodo De La Fuente, B. 1983 [Moderate ultrafiltration of raw cold milk on mineral membranes: industrial experiments.] Lait 63 246265CrossRefGoogle Scholar
Bennasar, M. & Tarodo De La Fuente, B. 1987 Model of the fouling mechanism and of the working of a mineral membrane in tangential filtration. Sciences des Aliments 7 647655Google Scholar
Bennasar, M. & Tarodo De La Fuente, B. 1989 [Conception of industrial tangential filtration plants for biological products concentration or clarification.] Industries Alimentaires et Agricoles 43 4349Google Scholar
Bringe, N. A. & Kinsella, J. E. 1990 Acidic coagulation of casein micelles: mechanisms inferred from spectrophotometrie studies. Journal of Dairy Research 57 365375CrossRefGoogle Scholar
Clifton, M. 1982 [Polarization of the Concentrate in Various Membrane Separation Procedures.] Thesis, University P. Sabatier, ToulouseGoogle Scholar
Culioli, J., Bon, J. P. & Maubois, J. L. 1974 [Study on the viscosity of retentate and precheese obtained by ultrafiltration of milk.] Lait 54 481500CrossRefGoogle Scholar
Dejmek, P. 1975 Concentration Polarization in Ultrafiltration of Macromolecules. Thesis, University of LundGoogle Scholar
Desobry-Banon, S. 1991 [Modification of the Casein Micelles Structure during Milk Acidification by Gluconodelta lactone Hydrolysis.] Thesis, Institut National Polytechnique de Lorraine, NancyGoogle Scholar
Elfagm, A. A. & Wheelock, J. V. 1978 Interaction of bovine α-lactalbumin and β-lactoglobulin during heating. Journal of Dairy Science 61 2832CrossRefGoogle Scholar
Goudedranche, H., Maubois, J.-L., Ducruet, P. & Mahaut, M. 1980 Utilization of the new mineral UF membranes for making semi-hard cheeses. Desalination 35 243258CrossRefGoogle Scholar
Hauge, S. S., Oterholm, B. & Solberg, P. 1974 Chemical and physical properties of cultured milks as influenced by pumping methods. XIXth Internatisonal Dairy Congress, New Delhi 1E 739 740Google Scholar
Korolczuk, J. & Mahaut, M. 1990 Effect of temperature, shearing time and rate of shear on the apparent viscosity of fresh cheeses. Lait 70 1521CrossRefGoogle Scholar
Lee, C.-H. & Rha, C. 1979 Rheological properties of proteins in solution. In Food Texture and Rheology, pp. 245263 (Ed. Sherman, P. H.). London: Academic PressGoogle Scholar
Mahaut, M. & Korolczuk, J. 1992 [Effect of ultrafiltration plant design on the consistency of fresh cheese.] Milchwissenschaft 47 8486Google Scholar
Mahaut, M., Korolcszuk, J., Pannetier, R. & Maubois, J. L. 1986 [;Manufacture of lactic soft goats' milk cheese by ultrafiltration of acidified, coagulated milk.] Technique Laitière no. 1011 2428Google Scholar
Mahaut, M., Maubois, J.-L., Zink, A., Pannetier, R. & Veyre, R. 1982 [Manufacture of fresh cheese by ultrafiltration of curd.] Technique Laitière no. 961 913Google Scholar
Rautenbach, R. & Holt, H. 1980 Effect of concentration dependence of physical properties on ultrafiltration. German Chemical Engineering 3 180185Google Scholar
Rios, G. M., Tarodo De La Fuente, B., Bennasar, M. & Guizard, C. 1989 Cross-flow filtration of biological fluids on inorganic membranes: a first state of the art. In Developments in Food Preservation, vol. 5, pp. 131175 (Ed. Thorne, S.). London: Elsevier Applied ScienceGoogle Scholar
Roefs, S. P. F. M., Walstra, P., Dalgleish, D. G. & Horne, D. S. 1985 Preliminary note on the change in casein micelles caused by acidification. Netherlands Milk and Dairy Journal 39 119122Google Scholar
Sawyer, W. H., 1969 Complex between β-lactoglobulin and κ-casein. A review. Journal of Dairy Science 52 13471355CrossRefGoogle ScholarPubMed
Taddei, C., Aimar, P., Daufin, G. & Sanchez, V. 1988 [Factors affecting fouling of an inorganic membrane during sweet whey ultrafiltration.] Lait 68 157176CrossRefGoogle Scholar
Tarodo De La Fuente, B. 1991 Rheological behavior of concentrates during the processing of lactie curds using inorganic membranes. In Inorganic Membranes, pp. 225233 (Ed. Bhave, R.). New York: Van Nostrand ReinholdGoogle Scholar
Tarodo De La Fuente, B., Turk, S., Alais, C., Hutin, G. & Bruneau, J. C. 1971 [Influence of the storage-period before coagulation on properties and composition of lactic curds obtained from concentrate milk.] Lait 51 623637CrossRefGoogle Scholar
Vétier, C., Bennasar, M. & Tarodo De La Fuente, B. 1986 [Study of the interactions between milk constituents and mineral membranes for microfiltration.] Lait 66 269287CrossRefGoogle Scholar
Vétier, C., Bennasar, M. & Tarodo De La Fuente, B. 1988 Study of the fouling of a mineral microfiltration membrane using scanning electron microscopy and physicochemieal analyses in the processing of milk. Journal of Dairy Research 55 381400CrossRefGoogle Scholar
Walstra, P. 1990 On the stability of casein micelles. Journal of Dairy Science 73 19651979CrossRefGoogle Scholar