Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T07:12:47.219Z Has data issue: false hasContentIssue false

The effect of diet restriction on raw milk stability: a meta-analytical approach

Published online by Cambridge University Press:  12 January 2024

Lisiane da Silveira Garcia
Affiliation:
Animal Science Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Arthur Fernandes Bettencourt
Affiliation:
Animal Science Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Júlia Fernandes Aires
Affiliation:
Animal Science Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Ines Andretta
Affiliation:
Animal Science Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
Vivian Fischer*
Affiliation:
Animal Science Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
*
Corresponding author: Vivian Fischer; Email: vivian.fischer@ufrgs.br

Abstract

This research communication was designed to evaluate the effects of different levels of diet restriction on the composition and ethanol stability (MES) of raw bovine milk. This research was carried out using three electronic databases: Scopus, Pubmed and Web of Science. The main inclusion criteria were: (i) original research, (ii) use of alcohol (ethanol) test as a method to assess milk stability, (iii) measure different levels of feed restriction and (iv) allow access to the raw data of articles. Of the nine publications that addressed the subject filtered by the systematic review, seven fitted the selection criteria and were selected to perform the meta-analysis. Feed restriction (reduction of 20, 30, 40 and 50% of the dietary dry matter offered) decreased (P < 0.01) milk yield (−18%), ethanol stability (−5%), acidity (−4%), protein (−3%) and lactose (−2%) concentrations, but did not affect the values of pH, density, fat and total solids concentrations, nor somatic cell count. The correlation between milk yield and MES was low but positive and numerically higher in the control group compared with the restriction group. The milk of cows fed the control diet presented greater ethanol stability (76.5%) compared with milk of cows fed the restrictive diet (72.8%). This decrease by up to 4 percentage units due to restriction levels ranging from 20 to 50% of diet intake may cause limitations in milk processing at the dairy industry, increasing milk rejection.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, AS, Fischer, V, Stumpf, MT, McManus, CM, González, FHD, Da Silva, JBS and Heisler, G (2020) Natural tree shade increases milk stability of lactating dairy cows during the summer in the subtropics. Journal of Dairy Research 87, 444447.CrossRefGoogle ScholarPubMed
Barbosa, RS, Fischer, V, Ribeiro, MER, Zanela, MB, Stumpf, MT, Kolling, GJ, Schafhäuser, JJ, Barros, LE and Egito, AS (2012) Electrophoretic characterization of proteins and milk stability of cows submitted to feeding restriction. Pesquisa Agropecuária Brasileira 47, 621628.CrossRefGoogle Scholar
Barchiesi-Ferrari, CG, Williams-Salinas, PA and Salvo-Garrido, SI (2007) Inestabilidad de la leche asociada a componentes lácteos y estacionalidad en vacas de pastoreo. Pesquisa Agropecuária Brasileira 42, 17851791.CrossRefGoogle Scholar
Fagnani, R, Araújo, JPA and Botaro, BG (2017) Field findings about milk ethanol stability: a first report of interrelationship between α-lactalbumin and lactose. Journal of the Science of Food and Agriculture 98, 27872792.CrossRefGoogle ScholarPubMed
Fruscalso, V, Stumpf, MT, McManus, CM and Fischer, V (2013) Feeding restriction impairs milk yield and physicochemical properties rendering it less suitable for sale. Scientia Agricola 70, 237241.CrossRefGoogle Scholar
Gabbi, AM, McManus, CM, Zanela, MB, Stumpf, MT, Barbosa, RS, Fruscalso, V, Neto, AT, Schmidt, FA and Fischer, V (2015) Milk traits of lactating cows submitted to feed restriction. Tropical Animal Health and Production 48, 3743.CrossRefGoogle ScholarPubMed
Gabbi, AM, McManus, CM, Marques, LT, Abreu, AS, Machado, SC, Zanela, MB, Barbosa, RS and Fischer, V (2018) Different levels of supplied energy for lactating cows affect physicochemical attributes of milk. Journal of Animal and Feed Science 27, 1117.Google Scholar
Guinard-Flament, J, Delamaire, E, Lamberton, P and Peyraud, JL (2007) Adaptations of mammary uptake and nutrient use to once-daily milking and feed restriction in dairy cows. Journal of Dairy Science 90, 50625072.CrossRefGoogle ScholarPubMed
Guo, MR, Wang, S, Li, Z, Qu, J, Jin, L and Kindsted, PS (1998) Ethanol stability of goat's milk. International Dairy Journal 8, 5760.CrossRefGoogle Scholar
Marques, LT, Fischer, V, Zanela, MB, Stumpf, WJ, Ribeiro, MER, Barros, LEV, Rodrigues, CM and Peters, MD (2010a) Supplementation of Holstein cows at an extended lactation stage. Ciência Rural 40, 13921398.CrossRefGoogle Scholar
Marques, LT, Fischer, V, Zanela, MB, Ribeiro, MER, Stumpf, WJ and Manzke, N (2010b) Supply of supplements with different energy and protein levels to Jersey cows and their effects on milk instability. Brazilian Animal Science (Revista Brasileira de Zootecnia) 39, 27242730.CrossRefGoogle Scholar
Marques, LT, Fischer, V, Zanela, MB, Ribeiro, MER, Stumpf, WJ and Rodrigues, CM (2011) Milk yield, milk composition and biochemical blood profile of lactating cows supplemented with anionic salt. Brazilian Journal of Animal Science 40, 10881094.Google Scholar
Martins, CMMR, Fonseca, DCM, Alves, BG, Arcari, MA, Ferreira, GC, Welter, KC, Oliveira, CAF, Rennó, FP and Santos, MV (2019) Effect of dietary crude protein degradability and corn processing on lactation performance and milk protein composition and stability. Journal of Dairy Science 102, 41654178.CrossRefGoogle ScholarPubMed
Schmidt, F (2015) Efeito do suprimento das exigências de energia e/ou proteína na recuperação da instabilidade do leite ao teste do álcool. Dissertação de mestrado, Centro de Ciências Agroveterinárias da Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil.Google Scholar
Schmidt, K, Stupar, J, Shirley, J, Adapa, S and Sukup, D (1996) Factors affecting titratable acidity in raw milk. Kansas Agricultural Experiment Station Research Reports 0, 6062.CrossRefGoogle Scholar
Stelwagen, K, Hopstert, H, Van Der Werf, JTN and Blokhuist, HJ (2000) Short communication: effects of isolation stress on mammary tight junctions in lactating dairy cows. Journal of Dairy Science 83, 4851.CrossRefGoogle ScholarPubMed
Stumpf, MT, Fischer, V, McManus, CM, Kolling, GJ, Zanela, MB, Santos, CS, Abreu, AS and Montagner, P (2013) Severe feed restriction increases permeability of mammary gland cell tight junctions and reduces ethanol stability of milk. Animal: An International Journal of Animal Bioscience 7, 11371142.CrossRefGoogle Scholar
Stumpf, MT, Fischer, V, Kolling, GJ, Silva, AV, Ribeiro, MER and Santos, CS (2016) Behaviors associated with cows more prone to produce milk with reduced stability to ethanol test due to feeding restriction. Ciência Rural 46, 16621667.CrossRefGoogle Scholar
Tsioulpas, A, Lewis, MJ and Grandison, AS (2007) Effect of minerals on casein micelle stability of cows’ milk. Journal of Dairy Research 74, 167173.CrossRefGoogle ScholarPubMed
Vizzotto, EF, Stivanin, SCB, Matiello, JP, Machado, FS, Campos, MM, Tomich, TR, Pereira, LGR, Stone, V, Klein, CP, Matté, C, Heisler, G and Fischer, V (2021) Feed intake, performance and redox status in Holstein and Girolando F1 heifers presenting high body condition score during the transition period. Livestock Science 54, 1871–1413.Google Scholar
Zanela, MB, Fischer, V, Ribeiro, MER, Barbosa, RS, Marques, LT, Stumpf, W and Zanela, C (2006) Unstable nonacid milk and milk composition of Jersey cows on feed restriction. Pesquisa Agropecuária Brasileira 41, 835840.CrossRefGoogle Scholar
Supplementary material: File

Garcia et al. supplementary material

Garcia et al. supplementary material
Download Garcia et al. supplementary material(File)
File 227.9 KB