Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T19:07:21.507Z Has data issue: false hasContentIssue false

Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model

Published online by Cambridge University Press:  18 July 2018

Emre Turkoz
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Jose M. Lopez-Herrera
Affiliation:
Departamento Ing. Aerospacial y Mecanica de Fluidos, Universidad de Sevilla, Sevilla 41004, Espana
Jens Eggers
Affiliation:
School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
Craig B. Arnold
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Luc Deike*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: ldeike@princeton.edu

Abstract

A fundamental understanding of the filament thinning of viscoelastic fluids is important in practical applications such as spraying and printing of complex materials. Here, we present direct numerical simulations of the two-phase axisymmetric momentum equations using the volume-of-fluid technique for interface tracking and the log-conformation transformation to solve the viscoelastic constitutive equation. The numerical results for the filament thinning are in excellent agreement with the theoretical description developed with a slender body approximation. We show that the off-diagonal stress component of the polymeric stress tensor is important and should not be neglected when investigating the later stages of filament thinning. This demonstrates that such numerical methods can be used to study details not captured by the one-dimensional slender body approximation, and pave the way for numerical studies of viscoelastic fluid flows.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anna, S. L. & McKinley, G. H. 2001 Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45 (1), 115138.Google Scholar
Ardekani, A. M., Sharma, V. & McKinley, G. H. 2010 Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets. J. Fluid. Mech. 665, 4656.Google Scholar
Balci, N., Thomases, B., Renardy, M. & Doering, C. R. 2011 Symmetric factorization of the conformation tensor in viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 166 (11), 546553.Google Scholar
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.Google Scholar
Bazilevskii, A. V., Entov, V. M., Lerner, M. M. & Rozhkov, A. N. 1997 Failure of polymer solution filaments. Polymer Science Series Vysokomolekuliarnye Soedineniia 39, 316324.Google Scholar
Bhat, P. P., Appathurai, S., Harris, M. T., Pasquali, M., McKinley, G. H. & Basaran, O. A. 2010 Formation of beads-on-a-string structures during break-up of viscoelastic filaments. Nat. Phys. 6 (8), 625631.Google Scholar
Bousfield, D. W., Keunings, R., Marrucci, G. & Denn, M. M. 1986 Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J. Non-Newtonian Fluid Mech. 21 (1), 7997.Google Scholar
Chang, H.-C., Demekhin, E. A. & Kalaidin, E 1999 Iterated stretching of viscoelastic jets. Phys. Fluids 11 (7), 17171737.Google Scholar
Clasen, C., Eggers, J., Fontelos, M. A., Li, J. & McKinley, G. H. 2006 The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283308.Google Scholar
Dealy, J. M. 2010 Weissenberg and Deborah numbers – their definition and use. Rheol. Bull. 79 (2), 1418.Google Scholar
Deike, L., Ghabache, E., Liger-Belair, G., Das, A. K., Zaleski, S., Popinet, S. & Séon, T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3 (1), 013603.Google Scholar
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.Google Scholar
Eggers, J. 2014 Instability of a polymeric thread. Phys. Fluids 26 (3), 033106.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Progr. Phys. 71 (3), 036601.Google Scholar
Étienne, J., Hinch, E. J. & Li, J. 2006 A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. J. Non-Newtonian Fluid Mech. 136 (2–3), 157166.Google Scholar
Fattal, R. & Kupferman, R. 2005 Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (1), 2337.Google Scholar
Hao, J. & Pan, T.-W. 2007 Simulation for high Weissenberg number: viscoelastic flow by a finite element method. Appl. Math. Lett. 20 (9), 988993.Google Scholar
Harlen, O. G., Rallison, J. M. & Szabo, P. 1995 A split Lagrangian–Eulerian method for simulating transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 60 (1), 81104.Google Scholar
Haward, S. J., Oliveira, M. S. N., Alves, M. A. & McKinley, G. H. 2012 Optimized cross-slot flow geometry for microfluidic extensional rheometry. Phys. Rev. Lett. 109 (12), 128301.Google Scholar
Howland, C. J., Antkowiak, A., Castrejón-Pita, J. R., Howison, S. D., Oliver, J. M., Style, R. W. & Castrejón-Pita, A. A. 2016 It’s harder to splash on soft solids. Phys. Rev. Lett. 117 (18), 184502.Google Scholar
Hulsen, M. A., Fattal, R. & Kupferman, R. 2005 Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (1), 2739.Google Scholar
Keunings, R. 1986 On the high Weissenberg number problem. J. Non-Newtonian Fluid Mech. 20, 209226.Google Scholar
Li, J. & Fontelos, M. A. 2003 Drop dynamics on the beads-on-string structure for viscoelastic jets: a numerical study. Phys. Fluids 15 (4), 922937.Google Scholar
Lopez-Herrera, J. M., Popinet, S. & Castrejón-Pita, A. A.2018 An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of slightly viscoelastic droplets. arXiv:1807.00103.Google Scholar
Morrison, N. F. & Harlen, O. G. 2010 Viscoelasticity in inkjet printing. Rheol. Acta 49 (6), 619632.Google Scholar
Popinet, S. 2015 A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 302, 336358.Google Scholar
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50 (1), 4975.Google Scholar
Renardy, M. 2000 Asymptotic structure of the stress field in flow past a cylinder at high Weissenberg number. J. Non-Newtonian Fluid Mech. 90 (1), 1323.Google Scholar
Sattler, R., Wagner, C. & Eggers, J. 2008 Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions. Phys. Rev. Lett. 100 (16), 164502.Google Scholar
Turkoz, E., Perazzo, A., Kim, H., Stone, H. A. & Arnold, C. B. 2018 Impulsively induced jets from viscoelastic films for high-resolution printing. Phys. Rev. Lett. 120 (7), 074501.Google Scholar
Wagner, C., Amarouchene, Y., Bonn, D. & Eggers, J. 2005 Droplet detachment and satellite bead formation in viscoelastic fluids. Phys. Rev. Lett. 95 (16), 164504.Google Scholar
Yao, M. & McKinley, G. H. 1998 Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices. J. Non-Newtonian Fluid Mech. 74 (1–3), 4788.Google Scholar