Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-20T07:24:28.961Z Has data issue: false hasContentIssue false

Axisymmetric stagnation flow of a spherical particle near a finite planar surface at zero Reynolds number

Published online by Cambridge University Press:  20 April 2006

Z. Dagan
Affiliation:
Institute of Applied Chemical Physics, The City College of The City University of New York, New York
R. Pfeffer
Affiliation:
Department of Chemical Engineering, The City College of The City University of New York, New York
S. Weinbaum
Affiliation:
Department of Mechanical Engineering, The City College of The City University of New York, New York

Abstract

The general axisymmetric creeping motion of a spherical particle in a stagnation region near a finite surface is modelled by the motion of a sphere of arbitrary size towards a disk for the follodg conditions: (a) pure translation in quiescent fluid, (b) uniform flow past a fixed sphere–disk configuration, and (c) a neutrally buoyant sphere carried by the fluid towards a disk. The combined analytic and numerical solution procedure is similar to that described in Dagan, Weinbaum & Pfeffer (1982b) for the motion of a sphere towards an orifice. The drag force acting on the sphere and on the disk under the flow conditions mentioned above is presented. In addition, the fluid velocity field has been obtained for the case of uniform flow past a fixed sphere–disk configuration. These solutions show the formation and coalescence of separated regions of closed streamlines adjacent to the sphere and the disk.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blake, J. R. 1971 Proc. Camb. Phil. Soc. 70, 303.
Brenner, H. 1961 Chem. Engng Sci. 16, 242.
Cooley, M. D. A. & O'Neill, M. E.1969 Proc. Camb. Phil. Soc. 66, 407.
Dagan, Z. 1980 Entrance effects in Stokes flow through a pore. Ph.D. dissertation, City University of New York.
Dagan, Z., Weinbaum, S. & Pfeffer, R. 1982a J. Fluid Mech. 115, 505.
Dagan, Z., Weinbaum, S. & Pfeffer, R. 1982b J. Fluid Mech. 117, 143.
Davis, A. M. J., O'Neill, M. E., Dorrepaal, J. M. & Ranger, K. B.1976 J. Fluid Mech. 77, 625.
Davis, A. M. J., O'Neill, M. E. & Brenner, H.1981 J. Fluid Mech. 103, 183.
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1954 Tables of Integral Transforms, vols 1, 2. McGraw-Hill.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1978 J. Fluid Mech. 84, 79.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1980 J. Fluid Mech. 99, 755.
Ganatos, P., Weinbaum, S. & Pfeffer, R. 1980 J. Fluid Mech. 99, 739.
Gluckman, M. J., Pfeffer, R. & Weinbaum, S. 1971 J. Fluid Mech. 50, 705.
Gluckman, M. J., Weinbaum, S. & Pfeffer, R. 1972 J. Fluid Mech. 69, 677.
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics, 2nd edn. Noordhoff.
Liao, W. H. & Krueger, D. A. 1980 J. Fluid Mech. 96, 223.
Liron, N. & Mochon, S. 1976 J. Engng Math. 10, 287.
Liron, N. & Shahar, R. 1978 J. Fluid Mech. 86, 727.
Sampson, R. A. 1891 Phil. Trans. R. Soc. Lond. A 182, 449.
Stimson, M. & Jeffery, O. B. 1926 Proc. R. Soc. Lond. A 111, 110.
Tranter, C. J. 1951 Q. J. Math. 2, 60.
Wacholder, E. & Sather, M. F. 1974 J. Fluid Mech. 65, 417.
Youngren, G. K. & Acrivos, A. 1975 J. Fluid Mech. 69, 813.