Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-14T18:03:04.722Z Has data issue: false hasContentIssue false

CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping

Published online by Cambridge University Press:  28 October 2011

C. W. MacMinn
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M. L. Szulczewski
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
R. Juanes*
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: juanes@mit.edu

Abstract

The large-scale injection of carbon dioxide (CO2) into saline aquifers is a promising tool for reducing atmospheric CO2 emissions to mitigate climate change. An accurate assessment of the post-injection migration and trapping of the buoyant plume of CO2 is essential for estimates of storage capacity and security, but these physical processes are not fully understood. In Part 1 of this series, we presented a complete solution to a theoretical model for the migration and capillary trapping of a plume of CO2 in a confined, sloping aquifer with a natural groundwater through-flow. Here, we incorporate solubility trapping, where CO2 from the buoyant plume dissolves into the ambient brine via convective mixing. We develop semi-analytical solutions to the model in two limiting cases: when the water beneath the plume saturates with dissolved CO2 very slowly or very quickly (‘instantaneously’) relative to plume motion. We show that solubility trapping can greatly slow the speed at which the plume advances, and we derive an explicit analytical expression for the position of the nose of the plume as a function of time. We then study the competition between capillary and solubility trapping, and the impact of solubility trapping on the storage efficiency, a macroscopic measure of plume migration. We show that solubility trapping can increase the storage efficiency by several-fold, even when the fraction of CO2 trapped by solubility trapping is small.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bachu, S. 2003 Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ. Geol. 44 (3), 277289.CrossRefGoogle Scholar
2. Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P. & Mathiassen, O. M. 2007 CO2 storage capacity estimation: methodology and gaps. Intl J. Greenh. Gas Control 1 (4), 430443.CrossRefGoogle Scholar
3. Bachu, S., Gunter, W. D. & Perkins, E. H. 1994 Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers. Manage. 35 (4), 269279.CrossRefGoogle Scholar
4. Backhaus, S., Turitsyn, K. & Ecke, R. E. 2011 Convective instability and mass transport of diffusion layers in a Hele–Shaw geometry. Phys. Rev. Lett. 106 (10), 104501.CrossRefGoogle Scholar
5. Bear, J. 1972 Dynamics of Fluids in Porous Media. Elsevier, reprinted with corrections by Dover, 1988.Google Scholar
6. Bickle, M., Chadwick, A., Huppert, H. E., Hallworth, M. & Lyle, S. 2007 Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth Planet. Sci. Lett. 255 (1–2), 164176.CrossRefGoogle Scholar
7. Carbon Capture and Sequestration Technologies @ MIT 2010 CO2 thermophysical property calculator. URL: http://sequestration.mit.edu/tools/index.html.Google Scholar
8. Duan, Z. & Sun, R. 2003 An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193 (3–4), 257271.CrossRefGoogle Scholar
9. Elder, J. W. 1968 The unstable thermal interface. J. Fluid Mech. 32 (1), 6996.CrossRefGoogle Scholar
10. Ennis-King, J. & Paterson, L. 2005 Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J. 10 (3), 349356.CrossRefGoogle Scholar
11. Ennis-King, J., Preston, I. & Paterson, L. 2005 Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17, 084107.CrossRefGoogle Scholar
12. Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.CrossRefGoogle Scholar
13. García, J. 2001 Density of aqueous solutions of CO2. Lawrence Berkeley National Laboratory: Lawrence Berkeley National Laboratory, retrieved from: http://www.escholarship.org/uc/item/6dn022hb.Google Scholar
14. Garven, G. 1995 Continental-scale groundwater flow and geologic processes. Annu. Rev. Earth Planet. Sci. 23, 89117.CrossRefGoogle Scholar
15. Gasda, S. E., Nordbotten, J. M. & Celia, M. A. 2009 Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration. Comput. Geosci. 79 (1), 1527.Google Scholar
16. Gasda, S. E., Nordbotten, J. M. & Celia, M. A. 2011 Vertically-averaged approaches for CO2 migration with solubility trapping. Water Resour. Res. 47, W05528.CrossRefGoogle Scholar
17. Gunn, I. & Woods, A. W. 2011 On the flow of buoyant fluid injected into a confined, inclined aquifer. J. Fluid Mech. 672, 109129.CrossRefGoogle Scholar
18. Hesse, M. A., Orr, F. M. Jr & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.CrossRefGoogle Scholar
19. Hesse, M. A., Tchelepi, H. A., Cantwell, B. J. & Orr, F. M. Jr 2007 Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech. 577, 363383.CrossRefGoogle Scholar
20. Hesse, M. A., Tchelepi, H. A. & Orr, F. M. Jr 2006 Scaling analysis of the migration of CO2 in saline aquifers. In SPE Annual Technical Conference and Exhibition, San Antonio, TX (SPE 102796).CrossRefGoogle Scholar
21. Hidalgo, J. & Carrera, J. 2009 Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441452.CrossRefGoogle Scholar
22. Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.CrossRefGoogle Scholar
23. IPCC 2005 Carbon dioxide capture and storage. Special report prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge, UK.Google Scholar
24. Juanes, R. & MacMinn, C. W. 2008Upscaling of capillary trapping under gravity override: application to CO2 sequestration in aquifers. In SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA (SPE 113496).CrossRefGoogle Scholar
25. Juanes, R., MacMinn, C. W. & Szulczewski, M. L. 2010 The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Trans. Porous Med. 82 (1), 1930.CrossRefGoogle Scholar
26. Juanes, R., Spiteri, E. J., Orr, F. M. Jr & Blunt, M. J. 2006 Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42, W12418.CrossRefGoogle Scholar
27. Kharaka, Y. K. & Hanor, J. S. 2003 Deep fluids in the continents. Part I. Sedimentary basins. In Treatise on Geochemistry, vol. 5. pp. 148. Elsevier.Google Scholar
28. Kneafsey, T. J. & Pruess, K. 2010 Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Trans. Porous Med. 82 (1), 123139.CrossRefGoogle Scholar
29. Kochina, I. N., Mikhailov, N. N. & Filinov, M. V. 1983 Groundwater mound damping. Intl J. Engng Sci. 21 (4), 413421.CrossRefGoogle Scholar
30. Lackner, K. S. 2003 Climate change: a guide to CO2 sequestration. Science 300 (5626), 16771678.CrossRefGoogle ScholarPubMed
31. Lax, P. D. 1972 The formation and decay of shock waves. Am. Math. Mon. 79 (3), 227241.CrossRefGoogle Scholar
32. Lindeberg, E. & Wessel-Berg, D. 1997 Vertical convection in an aquifer column under a gas cap of CO2 . Energy Convers. Manage. 38, S229S234.CrossRefGoogle Scholar
33. MacMinn, C. W. & Juanes, R. 2009 Post-injection spreading and trapping of CO2 in saline aquifers: impact of the plume shape at the end of injection. Comput. Geosci. 13 (4), 483491.CrossRefGoogle Scholar
34. MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2010 CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.CrossRefGoogle Scholar
35. Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. & Huppert, H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, L22404.CrossRefGoogle Scholar
36. Neufeld, J. A., Vella, D. & Huppert, H. E. 2009 The effect of a fissure on storage in a porous medium. J. Fluid Mech. 639, 239259.CrossRefGoogle Scholar
37. Nicot, J. -P. 2008 Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Intl J. Greenh. Gas Control 2 (4), 582593.CrossRefGoogle Scholar
38. Nordbotten, J. M. & Celia, M. A. 2006 Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech. 561, 307327.CrossRefGoogle Scholar
39. Orr, F. M. Jr 2009 Onshore geologic storage of CO2 . Science 325 (5948), 16561658.CrossRefGoogle ScholarPubMed
40. Pau, G. S. H., Bell, J. B., Pruess, K., Almgren, A. S., Lijewski, M. J. & Zhang, K. 2010 High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33 (4), 443455.CrossRefGoogle Scholar
41. Pritchard, D. 2007 Gravity currents over fractured substrates in a porous medium. J. Fluid Mech. 584, 415431.CrossRefGoogle Scholar
42. Rapaka, S., Chen, S., Pawar, R. J., Stauffer, P. H. & Zhang, D. 2008 Non-modal growth of perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285303.CrossRefGoogle Scholar
43. Rapaka, S., Pawar, R. J., Stauffer, P. H., Zhang, D. & Chen, S. 2009 Onset of convection over a transient base-state in anisotropic and layered porous media. J. Fluid Mech. 614, 227244.CrossRefGoogle Scholar
44. Riaz, A., Hesse, M., Tchelepi, H. A. & Orr, F. M. Jr 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.CrossRefGoogle Scholar
45. Schrag, D. P. 2007 Preparing to capture carbon. Science 315 (5813), 812813.CrossRefGoogle ScholarPubMed
46. Slim, A. C. & Ramakrishnan, T. S. 2010 Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22 (12), 124103.CrossRefGoogle Scholar
47. Verdon, J. & Woods, A. W. 2007 Gravity-driven reacting flows in a confined porous aquifer. J. Fluid Mech. 588, 2941.CrossRefGoogle Scholar
48. Weir, G. J., White, S. P. & Kissling, W. M. 1996 Reservoir storage and containment of greenhouse gases. Trans. Porous Med. 23 (1), 3760.Google Scholar
49. Wooding, R. A., Tyler, S. W. & White, I. 1997a Convection in groundwater below an evaporating salt lake. Part 1. Onset of instability. Water Resour. Res. 33 (6), 11991217.CrossRefGoogle Scholar
50. Wooding, R. A., Tyler, S. W., White, I. & Anderson, P. A. 1997b Convection in groundwater below an evaporating salt lake. Part 2. Evolution of fingers or plumes. Water Resour. Res. 33 (6), 12191228.CrossRefGoogle Scholar
51. Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar