Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T16:58:41.315Z Has data issue: false hasContentIssue false

Direct numerical simulation of the oscillatory flow around a sphere resting on a rough bottom

Published online by Cambridge University Press:  01 June 2017

Marco Mazzuoli
Affiliation:
Department of Civil, Chemical and Environmental Engineering – University of Genoa, Via Montallegro 1, 16145 Genova, Italy
Paolo Blondeaux*
Affiliation:
Department of Civil, Chemical and Environmental Engineering – University of Genoa, Via Montallegro 1, 16145 Genova, Italy
Julian Simeonov
Affiliation:
Marine Geosciences Division, Naval Research Laboratory, Code 7434, Bldg. 1005, Stennis Space Center, MS 39529, USA
Joseph Calantoni
Affiliation:
Marine Geosciences Division, Naval Research Laboratory, Code 7434, Bldg. 1005, Stennis Space Center, MS 39529, USA
*
Email address for correspondence: paolo.blondeaux@unige.it

Abstract

The oscillatory flow around a spherical object lying on a rough bottom is investigated by means of direct numerical simulations of the continuity and Navier–Stokes equations. The rough bottom is simulated by a layer/multiple layers of spherical particles, the size of which is much smaller that the size of the object. The period and amplitude of the velocity oscillations of the free stream are chosen to mimic the flow at the bottom of sea waves and the size of the small spherical particles falls in the range of coarse sand/very fine gravel. Even though the computational costs allow only the simulation of moderate values of the Reynolds number characterizing the bottom boundary layer, the results show that the coherent vortex structures, shed by the spherical object, can break up and generate turbulence, if the Reynolds number of the object is sufficiently large. The knowledge of the velocity field allows the dynamics of the large-scale coherent vortices shed by the object to be determined and turbulence characteristics to be evaluated. Moreover, the forces and torques acting on both the large spherical object and the small particles, simulating sediment grains, can be determined and analysed, thus laying the groundwork for the investigation of sediment dynamics and scour developments.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmolov, E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 263, 118.Google Scholar
Asmolov, E. S. & McLaughlin, J. B. 1999 The inertial lift on an oscillating sphere in a linear shear flow. Intl J. Multiphase Flow 25 (4), 739751.CrossRefGoogle Scholar
Baykal, C., Sumer, B. M., Fuhrman, D. R., Jacobsen, N. G. & Fredsøe, J. 2015 Numerical investigation of flow and scour around a vertical circular cylinder. Phil. Trans. R. Soc. Lond. A 373 (2033), 20140104.Google ScholarPubMed
Beam, R. M. & Warming, R. F. 1976 An implicit finite-difference algorithm for hyperbolic systems in conservation-law form. J. Comput. Phys. 22 (1), 87110.CrossRefGoogle Scholar
Blondeaux, P. & Vittori, G. 1991 A route to chaos in an oscillatory flow: Feigenbaum scenario. Phys. Fluids A 3 (11), 24922495.CrossRefGoogle Scholar
Brownlie, W. R.1981 Prediction of flow depth and sediment discharge in open channels. Rep. No. KH-R-43A. W. M. Keck Laboratory, California Institute of Technology.Google Scholar
Carstensen, S., Sumer, B. M. & Fredsøe, J. 2010 Coherent structures in wave boundary layers. Part 1. Oscillatory motion. J. Fluid Mech. 646, 169206.CrossRefGoogle Scholar
Celik, A. O., Diplas, P. & Dancey, C. L. 2014 Instantaneous pressure measurements on a spherical grain under threshold flow conditions. J. Fluid Mech. 741, 6097.CrossRefGoogle Scholar
Cherukat, P., McLaughlin, J. B. & Graham, A. L. 1994 The inertial lift on a rigid sphere translating in a linear shear flow field. Intl J. Multiphase Flow 20 (2), 339353.CrossRefGoogle Scholar
Cherukat, P. & McLaughlin, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech. 263, 118.CrossRefGoogle Scholar
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.CrossRefGoogle Scholar
Fischer, P. F., Leaf, G. K. & Restrepo, J. M. 2002 Forces on particles in oscillatory boundary layers. J. Fluid Mech. 468, 327347.CrossRefGoogle Scholar
Fornarelli, F. & Vittori, G. 2009 Oscillatory boundary layer close to a rough wall. Eur. J. Mech. (B/Fluids) 28 (2), 283295.CrossRefGoogle Scholar
Frank, D., Foster, D., Sou, I. M. & Calantoni, J. 2015a Incipient motion of surf zone sediments. J. Geophys. Res.: Oceans 120 (8), 57105734.CrossRefGoogle Scholar
Frank, D., Foster, D., Sou, I. M., Calantoni, J. & Chou, P. 2015b Lagrangian measurements of incipient motion in oscillatory flows. J. Geophys. Res.: Oceans 120 (1), 244256.CrossRefGoogle Scholar
Fuhrman, D. R., Baykal, C., Sumer, B. M., Jacobsen, N. G. & Fredsøe, J. 2014 Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines. Coast. Engng 94, 1022.CrossRefGoogle Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75 (02), 193207.CrossRefGoogle Scholar
Huang, J. & Greengard, L. 2000 A fast direct solver for elliptic partial differential equations on adaptively refined meshes. SIAM J. Sci. Comput. 21 (4), 15511566.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Mazzuoli, M. & Vittori, G. 2016 Transition to turbulence in an oscillatory flow over a rough wall. J. Fluid Mech. 792, 6797.CrossRefGoogle Scholar
Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011 Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 685, 365376.CrossRefGoogle Scholar
Parker, G., Seminara, G. & Solari, L. 2003 Bed load at low shields stress on arbitrarily sloping beds: alternative entrainment formulation. Water Resources Res. 39 (7), 1183.CrossRefGoogle Scholar
Ricker, P.M̃. 2008 A direct multigrid poisson solver for oct-tree adaptive meshes. Astrophys. J. Suppl. Series 176, 293300.CrossRefGoogle Scholar
Roma, A. M., Peskin, C. S. & Berger, M. J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (2), 509534.CrossRefGoogle Scholar
Rosenthal, G. N. & Sleath, J. F. A. 1986 Measurements of lift in oscillatory flow. J. Fluid Mech. 164, 449467.CrossRefGoogle Scholar
Sleath, J. F. A. 1976 On rolling grain ripples. J. Hydraulic Res. 14, 6980.CrossRefGoogle Scholar
Sleath, J. F. A. 1999 Conditions for plug formation in oscillatory flow. Cont. Shelf Res. 19 (13), 16431664.CrossRefGoogle Scholar
Soulsby, R. L. & Whitehouse, R. J. S. 1997 Threshold of sediment motion in coastal environments. In Pacific Coasts and Ports 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, vol. 1, p. 145. Centre for Advanced Engineering, University of Canterbury.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Verzicco, R. & Vittori, G. 1996 Direct simulation of transition in stokes boundary layers. Phys. Fluids 8 (6), 13411343.CrossRefGoogle Scholar
Vittori, G. & Blondeaux, P. 1993 Quasiperiodicity and phase locking route to chaos in the 2-d oscillatory flow around a circular cylinder. Phys. Fluids A 5 (8), 18661868.CrossRefGoogle Scholar
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.CrossRefGoogle Scholar