Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-06T01:25:04.517Z Has data issue: false hasContentIssue false

Effect of tabs on transverse jet instabilities, structure, vorticity dynamics and mixing

Published online by Cambridge University Press:  05 May 2021

Elijah W. Harris
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
A.C. Besnard
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
A.R. Karagozian*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA90095, USA
*
Email address for correspondence: ark@seas.ucla.edu

Abstract

This experimental study examined the effects of strategic positioning of tabs in the periphery of the exit plane of a transverse jet as a means of controlling shear layer instabilities and vorticity as well as jet structure and mixing. Conditions corresponding to a naturally absolutely unstable upstream shear layer (USL), with low jet-to-crossflow momentum flux ratios $J$ (below 8–9) and to a convectively unstable USL ($J\geq 20$) were explored for different jet Reynolds numbers, 1900 and 2300. Acetone planar laser-induced fluorescence imaging and stereo particle image velocimetry were utilized to explore the influence of the tab. Placement of the tab in the upstream region of the jet exit caused significant weakening of the USL instability at lower $J$, but with only marginal weakening for larger $J$ values. Yet tab placement was observed to affect cross-sectional structure and vorticity dynamics much more significantly at high $J$ values. For all flow conditions, tab placement in the upstream region improved molecular mixing to a greater degree than at other locations. Vorticity fields, proper orthogonal decomposition modes, and coefficient plots extracted from centreplane velocity field measurements showed significant influence of tab placement on jet dynamical characteristics depending on $J$. Tab locations with the greatest influence were consistent with wavemaker regions predicted in numerical simulations of the transverse jet (Regan & Mahesh, J. Fluid Mech., vol. 877, 2019, pp. 330–372), providing evidence for the potential to tailor shear layer rollup, jet structure and mixing via simple passive geometrical alterations.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahuja, K.K. & Brown, W.H. 1989 Shear flow control by mechanical tabs. AIAA Paper 89-0994.CrossRefGoogle Scholar
Alves, L.S.D.B., Kelly, R.E. & Karagozian, A.R. 2007 Local stability analysis of an inviscid transverse jet. J. Fluid Mech. 581, 401418.CrossRefGoogle Scholar
Alves, L.S.D.B., Kelly, R.E. & Karagozian, A.R. 2008 Transverse-jet shear-leyer instabilities. Part 2. Linear analysis for larger jet-to-crossflow velocity ratio. J. Fluid Mech. 602, 383401.CrossRefGoogle Scholar
Bagheri, S., Schlatter, P., Schmid, P.J. & Henningson, D.S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.CrossRefGoogle Scholar
Bohl, D.G. & Foss, J.F. 1995 Characteristics of the velocity and streamwise vorticity fields in a developing tabbed jet. AIAA Paper 95-0102.CrossRefGoogle Scholar
Bradbury, L.J.S. & Khadem, A.H. 1975 The distortion of a jet by tabs. J. Fluid Mech. 70 (4), 801813.CrossRefGoogle Scholar
Bunyajitradulya, A. & Sathapornnanon, S. 2005 Sensitivity to tab disturbance of the mean flow structure of nonswirling jet and swirling jet in crossflow. Phys. Fluids 17 (4), 045102.CrossRefGoogle Scholar
Carletti, M.J., Rogers, C.B. & Parekh, D.E. 1996 Parametric study of jet mixing enhancement by vortex generators, tabs, and deflector plates. ASME Publ. FED 237, 303312.Google Scholar
Cortelezzi, L. & Karagozian, A.R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.CrossRefGoogle Scholar
Davitian, J., Getsinger, D., Hendrickson, C. & Karagozian, A.R. 2010 a Transition to global instability in transverse-jet shear layers. J. Fluid Mech. 661, 294315.CrossRefGoogle Scholar
Davitian, J., Hendrickson, C., Getsinger, D., M'Closkey, R.T. & Karagozian, A.R. 2010 b Strategic control of transverse jet shear layer instabilities. AIAA J. 48 (9), 21452156.CrossRefGoogle Scholar
Fearn, R. & Weston, R. 1974 Vorticity associated with a jet in a crossflow. AIAA J. 12, 16661671.CrossRefGoogle Scholar
Fric, T.F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Getsinger, D.R., Gevorkyan, L., Smith, O.I. & Karagozian, A.R. 2014 Structural and stability characteristics of jets in crossflow. J. Fluid Mech. 760, 342367.CrossRefGoogle Scholar
Getsinger, D.R., Hendrickson, C. & Karagozian, A.R. 2012 Shear layer instabilities in low-density transverse jets. Exp. Fluids 53, 783801.CrossRefGoogle Scholar
Gevorkyan, L. 2015 Structure and mixing characterization of variable density transverse jet flows. PhD dissertation, University of California, Los Angeles.Google Scholar
Gevorkyan, L., Shoji, T., Getsinger, D.R., Smith, O.I. & Karagozian, A.R. 2016 Transverse jet mixing characteristics. J. Fluid Mech. 790, 237274.CrossRefGoogle Scholar
Gevorkyan, L., Shoji, T., Peng, W.Y. & Karagozian, A.R. 2018 Influence of the velocity field on scalar transport in gaseous transverse jets. J. Fluid Mech. 834, 173219.CrossRefGoogle Scholar
Gutmark, E. & Ho, C.M. 1983 On the preferred modes of the spreading rates of jets. Phys. Fluids 26, 29322938.CrossRefGoogle Scholar
Harris, E.W. 2020 As of yet: Untitled. PhD thesis, University of California, Los Angeles.Google Scholar
Haven, B.A. & Kurosaka, M. 1997 Kidney and anti-kidney vortices in crossflow jets. J. Fluid Mech. 352, 2764.CrossRefGoogle Scholar
Hendrickson, C. 2012 Identification and control of the jet in crossflow. PhD thesis, University of California, Los Angeles.Google Scholar
Huerre, P. & Monkewitz, P.A. 1985 Absolute and convective instabilities in free shear flows. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Zaman, K.B.M.Q. 1978 The free shear layer tone phenomenon and probe interference. J. Fluid Mech. 87, 349383.CrossRefGoogle Scholar
Ilak, M., Schlatter, P., Bagheri, S. & Henningson, D.S. 2012 Bifurcation and stability analysis of a jet in crossflow. J. Fluid Mech. 696, 94121.CrossRefGoogle Scholar
Iyer, P.S. & Mahesh, K. 2016 A numerical study of shear layer characteristics for low-speed transverse jets. J. Fluid Mech. 790, 275307.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10 (11), 14251429.CrossRefGoogle Scholar
Karagozian, A.R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36, 531553.CrossRefGoogle Scholar
Kelso, R.M., Lim, T.T. & Perry, A.E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Kuzo, D.M. 1995 An experimental study of the turbulent transverse jet. PhD thesis, California Institute of Technology.Google Scholar
Liscinsky, D.S., True, B. & Holdeman, J.D. 1995 Effects of initial conditions on a single jet in crossflow. AIAA Paper 95-2998.CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.CrossRefGoogle Scholar
Margason, R.J. 1993 Fifty years of jet in cross flow research. AGARD-CP-534, Vol. 1, Neuilly sur Seine, France, 1–141.Google Scholar
Marzouk, Y.M. & Ghoniem, A.F. 2007 Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575, 267305.CrossRefGoogle Scholar
M'Closkey, R.T., King, J., Cortelezzi, L. & Karagozian, A.R. 2002 The actively controlled jet in crossflow. J. Fluid Mech. 452, 325335.CrossRefGoogle Scholar
Megerian, S., Davitian, J., Alves, L.S.D.B. & Karagozian, A.R. 2007 Transverse-jet shear-layer instabilities. Part 1. Experimental studies. J. Fluid Mech. 593, 93129.CrossRefGoogle Scholar
Meyer, K.E., Pedersen, J.M. & Özcan, O. 2007 A turbulent jet in crossflow analysed with proper orthogonal decomposition. J. Fluid Mech. 583, 199227.CrossRefGoogle Scholar
Michalke, A. 1971 Instabilitat eines kompressiblem ruden friestrahls unter beruck-sichtingung des einflusses der strahlgrenzschichtdicke. Z. Fluzwiss 9, 319328.Google Scholar
Petersen, R.A. & Samet, M.M. 1988 On the preferred mode of jet instability. J. Fluid Mech. 194, 153173.CrossRefGoogle Scholar
Peterson, S.D. & Plesniak, M.W. 2004 Evolution of jets emanating from short holes into crossflow. J. Fluid Mech. 503, 5791.CrossRefGoogle Scholar
Regan, M.A. & Mahesh, K. 2017 Global linear stability analysis of jets in cross-flow. J. Fluid Mech. 828, 812836.CrossRefGoogle Scholar
Regan, M.A. & Mahesh, K. 2019 Adjoint sensitivity and optimal perturbations of the low-speed jets in cross-flow. J. Fluid Mech. 877, 330372.CrossRefGoogle Scholar
Schlatter, P., Bagheri, S. & Henningson, D.S. 2011 Self-sustained global oscillations in a jet in crossflow. Theor. Comput. Fluid Dyn. 25, 29146.CrossRefGoogle Scholar
Shan, J. & Dimotakis, P. 2006 Reynolds-number effects and anisotropy in transverse-jet mixing. J. Fluid Mech. 566, 4796.CrossRefGoogle Scholar
Shoji, T. 2017 Mixing and structural characteristics of unforced and forced jets in crossflow. PhD dissertation, University of California, Los Angeles.Google Scholar
Shoji, T., Besnard, A., Harris, E.W., M'Closkey, R.T. & Karagozian, A.R. 2019 Effects of axisymetric square-wave excitation on transverse jet structure and mixing. AIAA J. 57 (5), 18621876.CrossRefGoogle Scholar
Shoji, T., Harris, E.W., Besnard, A. & Karagozian, A.R. 2020 a Effects of sinusoidal excitation on transverse jet dynamics, structure and mixing. AIAA J. 58 (9), 38893901.CrossRefGoogle Scholar
Shoji, T., Harris, E.W., Besnard, A., Schein, S.G. & Karagozian, A.R. 2020 b On the origins of transverse jet shear layer instability transition. J. Fluid Mech. 890, A7.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Q. Appl. Maths 45, 561590.CrossRefGoogle Scholar
Smith, S.H. & Mungal, M.G. 1998 Mixing, structure, and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Strykowski, P.J. & Niccum, D.L. 1991 The stability of countercurrent mixing layers in circular jets. J. Fluid Mech. 227, 309343.CrossRefGoogle Scholar
Su, L.K. & Mungal, M.G. 2004 Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J. Fluid Mech. 513, 145.CrossRefGoogle Scholar
Zaman, K.B.M.Q. 1998 Reduction of jet penetration in a cross-flow by using tabs. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, pp. 3276–3284. AIAA-98-3276.Google Scholar
Zaman, K.B.M.Q. & Foss, J.K. 1997 The effect of vortex generators on a jet in a cross-flow. Phys. Fluids 9 (1), 106114.CrossRefGoogle Scholar
Zaman, K.B.M.Q. & Milanovic, I. 2012 Control of a jet-in-crossflow by periodically oscillating tabs. Phys. Fluids 24, 055107.CrossRefGoogle Scholar
Zaman, K.B.M.Q., Reeder, M.F. & Samimy, M. 1991 Effect of tabs on the evaluation of an axisymmetrical jet. NASA Technical Memorandum NASA-TM104472.Google Scholar
Zaman, K.B.M.Q., Reeder, M.F. & Samimy, M. 1992 Supersonic jet mixing enhancement by delta tabs. AIAA Paper 92-3548.CrossRefGoogle Scholar
Zaman, K.B.M.Q., Reeder, M.F. & Samimy, M. 1994 Control of an axisymmetric jet using vortex generators. Phys. Fluids 6 (2), 778793.CrossRefGoogle Scholar