Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T14:27:40.678Z Has data issue: false hasContentIssue false

Enhancing large-scale motions and turbulent transport in rotating plane Poiseuille flow

Published online by Cambridge University Press:  22 January 2024

Shengqi Zhang
Affiliation:
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315201, PR China
Zhenhua Xia*
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, PR China
Shiyi Chen
Affiliation:
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315201, PR China Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email address for correspondence: xiazh1006@163.com

Abstract

Based on the characteristics of large-scale plume currents in rotating plane Poiseuille flows (RPPF), an injection/suction control strategy is introduced to augment the intensity of plume currents and improve the turbulent transport of passive scalar. The control strategy maintains the conventional non-penetrative condition on the stable side, and applies a wall-normal velocity that varies in the spanwise direction on the unstable side. For comparison, the control with non-penetrative condition on the unstable side and injection/suction on the stable side is also examined. The RPPF at $Re_\tau$ ranging from $180$ to $300$ and $Ro_\tau$ ranging from $0$ to $30$ are studied. Injection/suction with fixed root-mean-squared wall-normal velocity (below $1\,\%$ of the bulk mean velocity) at the wall is considered. Direct numerical simulations reveal that the injection/suction on the stable side has minor effect for all cases studied, whereas the injection/suction with properly distributed slots on the unstable side can significantly enhance the large-scale plume currents and the turbulent transport efficiency at small or moderate rotation numbers. This is attributed to the fact that plumes are generated on the unstable side, and controlling the origin of plumes is more effective. A proper strategy for maximum enhancement of turbulent transport is limiting the distance between injection slots equal to or slightly larger than the intrinsic distance between plume currents. This strategy is valid for all physical and computational parameters currently considered, and is potentially applicable over a much wider parameter range.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfredsson, P.H. & Tillmark, N. 2005 Instability, transition and turbulence in plane Couette flow with system rotation. In IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions, pp. 173–193. Springer.CrossRefGoogle Scholar
Bakhuis, D., Ezeta, R., Berghout, P., Bullee, P.A., Tai, D., Chung, D., Verzicco, R., Lohse, D., Huisman, S.G. & Sun, C. 2020 Controlling secondary flow in Taylor–Couette turbulence through spanwise-varying roughness. J. Fluid Mech. 883, A15.CrossRefGoogle Scholar
Bech, K.H. & Andersson, H.I. 1996 Secondary flow in weakly rotating turbulent plane Couette flow. J. Fluid Mech. 317, 195214.CrossRefGoogle Scholar
Bech, K.H. & Andersson, H.I. 1997 Turbulent plane Couette flow subject to strong system rotation. J. Fluid Mech. 347, 289314.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36 (1), 177191.CrossRefGoogle Scholar
Brethouwer, G. 2016 Linear instabilities and recurring bursts of turbulence in rotating channel flow simulations. Phys. Rev. Fluids 1 (5), 054404.CrossRefGoogle Scholar
Brethouwer, G. 2017 Statistics and structure of spanwise rotating turbulent channel flow at moderate Reynolds numbers. J. Fluid Mech. 828, 424458.CrossRefGoogle Scholar
Brethouwer, G. 2018 Passive scalar transport in rotating turbulent channel flow. J. Fluid Mech. 844, 297322.CrossRefGoogle Scholar
Brethouwer, G. 2019 Influence of spanwise rotation and scalar boundary conditions on passive scalar transport in turbulent channel flow. Phys. Rev. Fluids 4 (1), 014602.CrossRefGoogle Scholar
Brethouwer, G. 2021 Much faster heat/mass than momentum transport in rotating Couette flows. J. Fluid Mech. 912, A31.CrossRefGoogle Scholar
Brethouwer, G. 2023 Strong dissimilarity between heat and momentum transfer in rotating Couette flows. Intl J. Heat Mass Transfer 205, 123920.CrossRefGoogle Scholar
Brethouwer, G., Schlatter, P., Duguet, Y., Henningson, D.S. & Johansson, A.V. 2014 Recurrent bursts via linear processes in turbulent environments. Phys. Rev. Lett. 112 (14), 144502.CrossRefGoogle ScholarPubMed
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1994 Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75110.CrossRefGoogle Scholar
Dai, Y.-J., Huang, W.-X. & Xu, C.-X. 2016 Effects of Taylor–Görtler vortices on turbulent flows in a spanwise-rotating channel. Phys. Fluids 28 (11), 115104.CrossRefGoogle Scholar
Gai, J., Xia, Z., Cai, Q. & Chen, S. 2016 Turbulent statistics and flow structures in spanwise-rotating turbulent plane Couette flows. Phys. Rev. Fluids 1 (5), 054401.CrossRefGoogle Scholar
Gatti, D., Chiarini, A., Cimarelli, A. & Quadrio, M. 2020 Structure function tensor equations in inhomogeneous turbulence. J. Fluid Mech. 898, A5.CrossRefGoogle Scholar
Grundestam, O., Wallin, S. & Johansson, A.V. 2008 Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177199.CrossRefGoogle Scholar
Hsieh, A. & Biringen, S. 2016 The minimal flow unit in complex turbulent flows. Phys. Fluids 28 (12), 125102.CrossRefGoogle Scholar
Huang, Y., Xia, Z., Wan, M., Shi, Y. & Chen, S. 2019 Hysteresis behavior in spanwise rotating plane Couette flow with varying rotation rates. Phys. Rev. Fluids 4 (5), 052401.CrossRefGoogle Scholar
Iuso, G., Onorato, M., Spazzini, P.G. & di Cicca, G.M. 2002 Wall turbulence manipulation by large-scale streamwise vortices. J. Fluid Mech. 473, 2358.CrossRefGoogle Scholar
Jakirlić, S., Hanjalić, K. & Tropea, C. 2002 Modeling rotating and swirling turbulent flows: a perpetual challenge. AIAA J. 40 (10), 19841996.CrossRefGoogle Scholar
Johnston, J.P. 1998 Effects of system rotation on turbulence structure: a review relevant to turbomachinery flows. Intl J. Rotating Mach. 4 (2), 97112.CrossRefGoogle Scholar
Johnston, J.P., Halleent, R.M. & Lezius, D.K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56 (3), 533557.CrossRefGoogle Scholar
Kawata, T. & Alfredsson, P.H. 2018 Inverse interscale transport of the Reynolds shear stress in plane Couette turbulence. Phys. Rev. Lett. 120 (24), 244501.CrossRefGoogle ScholarPubMed
Kawata, T. & Alfredsson, P.H. 2019 Scale interactions in turbulent rotating planar Couette flow: insight through the Reynolds stress transport. J. Fluid Mech. 879, 255295.CrossRefGoogle Scholar
Kristoffersen, R. & Andersson, H.I. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163197.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Liu, N.-S. & Lu, X.-Y. 2007 Direct numerical simulation of spanwise rotating turbulent channel flow with heat transfer. Intl J. Numer. Meth. Fluids 53 (11), 16891706.CrossRefGoogle Scholar
Maciel, Y., Picard, D., Yan, G., Gleyzes, C. & Dumas, G. 2003 Fully developed turbulent channel flow subject to system rotation. In 33rd AIAA Fluid Dynamics Conference and Exhibit.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P.H. 1996 Experimental study of heat and momentum transfer in rotating channel flow. Phys. Fluids 8 (11), 29642973.CrossRefGoogle Scholar
Min, T., Kang, S.M., Speyer, J.L. & Kim, J. 2006 Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309318.CrossRefGoogle Scholar
Nagano, Y. & Hattori, H. 2003 Direct numerical simulation and modelling of spanwise rotating channel flow with heat transfer. J. Turbul. 4, N10.CrossRefGoogle Scholar
Nakabayashi, K. & Kitoh, O. 1996 Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. J. Fluid Mech. 315, 129.CrossRefGoogle Scholar
Nakabayashi, K. & Kitoh, O. 2005 Turbulence characteristics of two-dimensional channel flow with system rotation. J. Fluid Mech. 528, 355377.CrossRefGoogle Scholar
van der Poel, E.P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Sumitani, Y. & Kasagi, N. 1995 Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA J. 33 (7), 12201228.CrossRefGoogle Scholar
Tillmark, N. & Alfredsson, P.H. 1996 Experiments on Rotating Plane Couette Flow, pp. 391394. Springer.Google Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Tsukahara, T., Tillmark, N. & Alfredsson, P.H. 2010 Flow regimes in a plane Couette flow with system rotation. J. Fluid Mech. 648, 533.CrossRefGoogle Scholar
Visscher, J., Andersson, H.I., Barri, M., Didelle, H., Viboud, S., Sous, D. & Sommeria, J. 2011 A new set-up for PIV measurements in rotating turbulent duct flows. Flow Meas. Instrum. 22 (1), 7180.CrossRefGoogle Scholar
Wallace, J.M. & Dickinson, R.E. 1972 Empirical orthogonal representation of time series in the frequency domain. Part I. Theoretical considerations. J. Appl. Meteorol. Clim. 11 (6), 887892.2.0.CO;2>CrossRefGoogle Scholar
Wallin, S., Grundestam, O. & Johansson, A.V. 2013 Laminarization mechanisms and extreme-amplitude states in rapidly rotating plane channel flow. J. Fluid Mech. 730, 193219.CrossRefGoogle Scholar
Wu, H. & Kasagi, N. 2004 Turbulent heat transfer in a channel flow with arbitrary directional system rotation. Intl J. Heat Mass Transfer 47 (21), 45794591.CrossRefGoogle Scholar
Wu, W., Piomelli, U. & Yuan, J. 2019 Turbulence statistics in rotating channel flows with rough walls. Intl J. Heat Fluid Flow 80, 108467.CrossRefGoogle Scholar
Xia, Z., Brethouwer, G. & Chen, S. 2018 a High-order moments of streamwise fluctuations in a turbulent channel flow with spanwise rotation. Phys. Rev. Fluids 3 (2), 022601.CrossRefGoogle Scholar
Xia, Z., Shi, Y., Cai, Q., Wan, M. & Chen, S. 2018 b Multiple states in turbulent plane Couette flow with spanwise rotation. J. Fluid Mech. 837, 477490.CrossRefGoogle Scholar
Xia, Z., Shi, Y. & Chen, S. 2016 Direct numerical simulation of turbulent channel flow with spanwise rotation. J. Fluid Mech. 788, 4256.CrossRefGoogle Scholar
Xia, Z., Shi, Y., Wan, M., Sun, C., Cai, Q. & Chen, S. 2019 Role of the large-scale structures in spanwise rotating plane Couette flow with multiple states. Phys. Rev. Fluids 4 (10), 104606.CrossRefGoogle Scholar
Yang, Y.-T. & Wu, J.-Z. 2012 Channel turbulence with spanwise rotation studied using helical wave decomposition. J. Fluid Mech. 692, 137152.CrossRefGoogle Scholar
Zhang, S., Chen, X., Xia, Z., Xi, H.-D., Zhou, Q. & Chen, S. 2021 Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. J. Fluid Mech. 915, A14.CrossRefGoogle Scholar
Zhang, S., Xia, Z. & Chen, S. 2022 Flow structures in spanwise rotating plane Poiseuille flow based on thermal analogy. J. Fluid Mech. 933, A24.CrossRefGoogle Scholar
Zhang, S., Xia, Z., Shi, Y. & Chen, S. 2019 A two-dimensional-three-component model for spanwise rotating plane Poiseuille flow. J. Fluid Mech. 880, 478496.CrossRefGoogle Scholar
Zhang, S., Xia, Z., Zhou, Q. & Chen, S. 2020 Controlling flow reversal in two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 891, R4.CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary movie 1

Contours of v′ in the y−z plane from case at Roτ=5 without injection/suction control.
Download Zhang et al. supplementary movie 1(File)
File 5.1 MB
Supplementary material: File

Zhang et al. supplementary movie 2

Contours of v′ in the y−z plane from case at Roτ=5 with two injection slots in a spanwise period on the bottom (unstable) wall.
Download Zhang et al. supplementary movie 2(File)
File 3.1 MB
Supplementary material: File

Zhang et al. supplementary movie 3

Contours of v′ in the y−z plane from case at Roτ=5 with four injection slots in a spanwise period on the bottom (unstable) wall.
Download Zhang et al. supplementary movie 3(File)
File 4.4 MB
Supplementary material: File

Zhang et al. supplementary material 4

Zhang et al. supplementary material
Download Zhang et al. supplementary material 4(File)
File 6.1 MB