Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-24T11:19:05.526Z Has data issue: false hasContentIssue false

Experimental investigation of the structure of plane turbulent wall jets. Part 1. Spectral analysis

Published online by Cambridge University Press:  24 July 2024

Harish Choudhary
Affiliation:
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences), Pashan, Pune 411008, India Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune 411007, India
Abhishek Gupta
Affiliation:
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences), Pashan, Pune 411008, India
Shibani Bhatt
Affiliation:
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences), Pashan, Pune 411008, India
Thara Prabhakaran
Affiliation:
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences), Pashan, Pune 411008, India
A.K. Singh
Affiliation:
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
Anandakumar Karipot
Affiliation:
Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune 411007, India
Shivsai Ajit Dixit*
Affiliation:
Indian Institute of Tropical Meteorology (Ministry of Earth Sciences), Pashan, Pune 411008, India
*
Email address for correspondence: sadixit@tropmet.res.in

Abstract

Plane turbulent wall jets are traditionally considered to be composed of a turbulent boundary layer (TBL) topped by a half-free jet. However, certain peculiar features, such as counter-gradient momentum flux occurring below velocity maximum in experiments and numerical simulations, suggest a different structure of turbulence therein. Here, we hypothesize that turbulence in wall jets has two distinct structural modes, wall mode scaling on wall variables and free-jet mode scaling on jet variables. To investigate this hypothesis, experimental data from our wall jet facility are acquired using single hot-wire anemometry and two-dimensional particle image velocimetry at three nozzle Reynolds numbers 10 244, 15 742 and 21 228. Particle image velocimetry measurements with four side-by-side cameras capture the longest field of view studied so far in wall jets. Direct spatial spectra of these fields reveal modal spectral contributions to variances of velocity fluctuations, Reynolds shear stress, shear force, turbulence production, velocity fluctuation triple products and turbulent transport. The free-jet mode has wavelengths scaling on the jet length scale ${z_{T}}$, and contains two dominant submodes with wavelengths $5{z_{T}}$ and $2.5{z_{T}}$. The region of flow above the velocity maximum shows the presence of the outer jet mode whereas the region below it shows robust bimodal behaviour attributed to both wall and inner jet modes. Counter-gradient momentum flux is effected by the outer jet mode intruding into the region below velocity maximum. These findings support the hypothesis of wall and free-jet structural modes, and indicate that the region below velocity maximum could be much complex than a conventional TBL.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, N. 2005 Analysis of power law and log law velocity profiles in the overlap region of a turbulent wall jet. Proc. Math. Phys. Engng Sci. 461 (2058), 18891910.Google Scholar
Ahlman, D., Brethouwer, G. & Johansson, A.V. 2007 Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Phys. Fluids 19 (6), 065102.CrossRefGoogle Scholar
Artham, S., Zhang, Z. & Gnanamanickam, E.P. 2021 Inner–outer interactions in a forced plane wall jet. Exp. Fluids 62 (2), 120.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665681.Google ScholarPubMed
Banyassady, R. & Piomelli, U. 2014 Turbulent plane wall jets over smooth and rough surfaces. J. Turbul. 15 (3), 186207.CrossRefGoogle Scholar
Banyassady, R. & Piomelli, U. 2015 Interaction of inner and outer layers in plane and radial wall jets. J. Turbul. 16 (5), 460483.CrossRefGoogle Scholar
Barenblatt, G.I., Chorin, A.J. & Prostokishin, V.M. 2005 The turbulent wall jet: a triple-layered structure and incomplete similarity. Proc. Natl Acad. Sci. USA 102 (25), 88508853.CrossRefGoogle ScholarPubMed
Benedict, L.H. & Gould, R.D. 1996 Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22 (2), 129136.CrossRefGoogle Scholar
Bhatt, S. & Gnanamanickam, E. 2020 Linear and nonlinear mechanisms within a forced plane wall jet. Phys. Rev. Fluids 5 (7), 074604.CrossRefGoogle Scholar
Bradshaw, P. & Gee, M.T. 1962 Turbulent Wall Jets With and Without an External Stream. ARC R. & M. 3252. Her Majesty's Stationary Office.Google Scholar
Chin, C., Philip, J., Klewicki, J., Ooi, A. & Marusic, I. 2014 Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows. J. Fluid Mech. 757, 747769.CrossRefGoogle Scholar
Dejoan, A. & Leschziner, M.A. 2005 Large eddy simulation of a plane turbulent wall jet. Phys. Fluids 17 (2), 025102.CrossRefGoogle Scholar
Deo, R.C., Mi, J. & Nathan, G.J. 2008 The influence of Reynolds number on a plane jet. Phys. Fluids 20 (7), 075108.CrossRefGoogle Scholar
Dixit, S.A. & Ramesh, O.N. 2010 Large-scale structures in turbulent and reverse-transitional sink flow boundary layers. J. Fluid Mech. 649, 233273.CrossRefGoogle Scholar
Eriksson, J.G., Karlsson, R.I. & Persson, J. 1998 An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids 25 (1), 5060.CrossRefGoogle Scholar
Gadde, S.N. & Stevens, R.J.A.M. 2021 Interaction between low-level jets and wind farms in a stable atmospheric boundary layer. Phys. Rev. Fluids 6 (1), 014603.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191.CrossRefGoogle Scholar
George, W.K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. W.K George & R. Arndt), pp. 39–73. Hemisphere.Google Scholar
George, W.K., Abrahamsson, H., Eriksson, J., Karlsson, R.I., Löfdahl, L. & Wosnik, M. 2000 A similarity theory for the turbulent plane wall jet without external stream. J. Fluid Mech. 425, 367411.CrossRefGoogle Scholar
Gersten, K. 2015 The asymptotic downstream flow of plane turbulent wall jets without external stream. J. Fluid Mech. 779, 351370.CrossRefGoogle Scholar
Glauert, M.B. 1956 The wall jet. J. Fluid Mech. 1 (6), 625643.CrossRefGoogle Scholar
Gnanamanickam, E.P., Bhatt, S., Artham, S. & Zhang, Z. 2019 Large-scale motions in a plane wall jet. J. Fluid Mech. 877, 239281.CrossRefGoogle Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.CrossRefGoogle Scholar
Gupta, A., Choudhary, H., Singh, A.K., Prabhakaran, T. & Dixit, S.A. 2020 Scaling mean velocity in two-dimensional turbulent wall jets. J. Fluid Mech. 891, A11.CrossRefGoogle Scholar
Hammond, G.P. 1982 Complete velocity profile and “optimum” skin friction formulas for the plane wall-jet. Trans. ASME J. Fluids Engng 104 (1), 5965.CrossRefGoogle Scholar
Hunt, J.C.R. & Durbin, P.A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24 (6), 375.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.Google ScholarPubMed
Katz, Y., Horev, E. & Wygnanski, I. 1992 The forced turbulent wall jet. J. Fluid Mech. 242, 577609.CrossRefGoogle Scholar
Launder, B.E. & Rodi, W. 1979 The turbulent wall jet. Prog. Aerosp. Sci. 19, 81128.CrossRefGoogle Scholar
Launder, B.E. & Rodi, W. 1983 The turbulent wall jet measurements and modeling. Annu. Rev. Fluid Mech. 15 (1), 429459.CrossRefGoogle Scholar
Ligrani, P.M. & Bradshaw, P. 1987 Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes. Exp. Fluids 5 (6), 407417.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I. & Chong, M.S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Myers, G.E., Schauer, J.J. & Eustis, R.H. 1963 Plane turbulent wall jet flow development and friction factor. Trans. ASME J. Basic Engng 85 (1), 4753.CrossRefGoogle Scholar
Naqavi, I.Z., Tyacke, J.C. & Tucker, P.G. 2018 Direct numerical simulation of a wall jet: flow physics. J. Fluid Mech. 852, 507542.CrossRefGoogle Scholar
Narasimha, R. 1990 The utility and drawbacks of traditional approaches. In Whither Turbulence? Turbulence at the Crossroads: Proceedings of a Workshop Held at Cornell University, Ithaca, NY, March 22–24, 1989, pp. 13–48. Springer.CrossRefGoogle Scholar
Narasimha, R., Narayan, K.Y. & Parthasarathy, S.P. 1973 Parametric analysis of turbulent wall jets in still air. Aeronaut. J. 77 (751), 355359.CrossRefGoogle Scholar
Rostamy, N., Bergstrom, D.J., Sumner, D. & Bugg, J.D. 2011 An experimental study of a turbulent wall jet on smooth and transitionally rough surfaces. Trans. ASME J. Fluids Engng 133 (11), 111207.CrossRefGoogle Scholar
Schneider, M.E. & Goldstein, R.J. 1994 Laser doppler measurement of turbulence parameters in a two-dimensional plane wall jet. Phys. Fluids 6 (9), 31163129.CrossRefGoogle Scholar
Schwarz, W.H. & Cosart, W.P. 1961 The two-dimensional turbulent wall-jet. J. Fluid Mech. 10 (4), 481495.CrossRefGoogle Scholar
Sciacchitano, A. & Wieneke, B. 2016 PIV uncertainty propagation. Meas. Sci. Technol. 27 (8), 084006.CrossRefGoogle Scholar
Scibilia, M.F. & Lain, J. 1996 Study of large-coherent structures in a plane wall jet. Phys. Fluids 8 (11), 31493162.CrossRefGoogle Scholar
Smedman, A.S., Bergström, H. & Högström, U. 1995 Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Boundary-Layer Meteorol. 76 (3), 211232.CrossRefGoogle Scholar
Smedman, A.S., Högström, U. & Hunt, J.C.R. 2004 Effects of shear sheltering in a stable atmospheric boundary layer with strong shear. Q. J. R. Meteorol. Soc. 130 (596), 3150.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Stull, R.B. 1988 An Introduction to Boundary Layer Meteorology, vol. 13. Springer Science & Business Media.CrossRefGoogle Scholar
Tachie, M., Balachandar, R. & Bergstrom, D. 2002 Scaling the inner region of turbulent plane wall jets. Exp. Fluids 33 (2), 351354.CrossRefGoogle Scholar
Tailland, A. 1967 Jet parietal. J. Méc. 6, 103131.Google Scholar
Tennekes, H. & Lumley, J. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Wei, T. & Livescu, D. 2021 Scaling of the mean transverse flow and Reynolds shear stress in turbulent plane jet. Phys. Fluids 33 (3), 035142.CrossRefGoogle Scholar
Wei, T., Wang, Y. & Yang, X.I.A. 2021 Layered structure of turbulent plane wall jet. Intl J. Heat Fluid Flow 92, 108872.CrossRefGoogle Scholar
Wygnanski, I., Katz, Y. & Horev, E. 1992 On the applicability of various scaling laws to the turbulent wall jet. J. Fluid Mech. 234, 669690.CrossRefGoogle Scholar