Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-21T07:33:10.678Z Has data issue: false hasContentIssue false

Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition

Published online by Cambridge University Press:  21 May 2010

ILIA V. ROISMAN*
Affiliation:
Technische Universität Darmstadt, Chair of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, Petersenstrasse 30, 64287 Darmstadt, Germany
*
Email address for correspondence: roisman@sla.tu-darmstadt.de

Abstract

This theoretical study is devoted to description of fluid flow and heat transfer in a spreading viscous drop with phase transition. A similarity solution for the combined full Navier–Stokes equations and energy equation for the expanding lamella generated by drop impact is obtained for a general case of oblique drop impact with high Weber and Reynolds numbers. The theory is applicable to the analysis of the phenomena of drop solidification, target melting and film boiling. The theoretical predictions for the contact temperature at the substrate surface agree well with the existing experimental data.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amon, C. H., Schmaltz, K. S., Merz, R. & Prinz, F. B. 1996 Numerical and experimental investigation of interface bonding via substrate remelting of an impinging molten metal droplet. J. Heat Trans. 118, 164172.CrossRefGoogle Scholar
Attinger, D., Zhao, Z. & Poulikakos, D. 2000 An experimental study of molten microdroplet surface deposition and solidification: transient behaviour and wetting angle dynamics. J. Heat Trans. 122, 544556.CrossRefGoogle Scholar
Aziz, S. D. & Chandra, S. 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Trans. 43, 28412857.CrossRefGoogle Scholar
Bakshi, S., Roisman, I. V. & Tropea, C. 2007 Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19, 032102.CrossRefGoogle Scholar
Bico, J., Marzolin, C. & Quéré, D. 1999 Pearl drops. Europhys. Lett. 47, 220.CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.Google Scholar
Carey, V. P. 2007 Liquid Vapour Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. Pergamon.Google Scholar
Dhiman, R. & Chandra, S. 2005 Freezing-induced splashing during impact of molten metal droplets with high Weber numbers. Intl J. Heat Mass Trans. 48, 56255638.CrossRefGoogle Scholar
Dijksman, J. F. & Pierik, A. 2008 Fluid dynamical analysis of the distribution of ink jet printed biomolecules in microarray substrates for genotyping applications. Biomicrofluidics 2, 044101.CrossRefGoogle ScholarPubMed
Fauchais, P., Fukumoto, M., Vardelle, A. & Vardelle, M. 2004 Knowledge concerning splat formation: an invited review. J. Therm. Spray Technol. 13 (3), 337360.CrossRefGoogle Scholar
Kellay, H. 2005 Impact of drops on a water-covered sand bed: erosion, entrainement and pattern formation. Europhys. Lett. 71 (3), 400406.CrossRefGoogle Scholar
Manzello, S. L. & Yang, J. C. 2002 On the collision dynamics of a water droplet containing an additive on a heated solid surface. Proc. R. Soc. Lond. A 458, 24172444.CrossRefGoogle Scholar
Miller, D. R., Lynch, J. & Tate, P. A. 2002 Overview of high speed close-up imaging in an icing environment. Tech. Mem. TM 2004-212925. NASA, Paper 2004-0407, Forty-second Aerospace Sciences Meeting and Exhibit, AIAA.CrossRefGoogle Scholar
Mock, U., Michel, T., Tropea, C., Roisman, I. V. & Rühe, J. 2005 Drop impact on chemically structured arrays. J. Phys.: Condens. Matter 17, S607S622.Google Scholar
Orme, M. 1993 A novel technique of rapid solidification net-form materials synthesis. J. Mater. Engng Perform. 2 (3), 399405.CrossRefGoogle Scholar
Pepper, R. E., Courbin, L. & Stone, H. A. 2008 Splashing on elastic membranes: the importance of early-time dynamics. Phys. Fluids 20, 082103.CrossRefGoogle Scholar
Range, K. & Feuillebois, F. 1998 Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 203, 1630.CrossRefGoogle Scholar
Rein, M. (Ed.) 2000 Drop-Surface Interactions. Springer.Google Scholar
Roisman, I. V. 2009 Inertia dominated drop collisions. Part II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21, 052104.CrossRefGoogle Scholar
Roisman, I. V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions. Part I. On the universal flow in the lamella. Phys. Fluids 21, 052103.CrossRefGoogle Scholar
Roisman, I. V. & Tropea, C. 2002 Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472, 373397.CrossRefGoogle Scholar
Senda, J., Yamada, K., Fujimoto, H. & Miki, H. 1988 The heat transfer characteristics of a small droplet impinging upon a hot surface. JSME Intl J. II 31, 105111.Google Scholar
Steirer, K. X., Berry, J. J., Reese, M. O., van Hest, M. F. A. M., Miedaner, A., Liberatore, M. W., Collins, R. T. & Ginley, D. S. 2009 Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells. Thin Solid Films 517, 27812786.CrossRefGoogle Scholar
Tropea, C. & Roisman, I. V. 2005 Droplet breakup and coalescense. In Multiphase Flow Handbook (ed. Crowe, C.), Mechanical Engineering Series, vol. 27, ch. 12.3. CRC Press.Google Scholar
Ukiwe, C. & Kwok, D. Y. 2005 On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21, 666673.CrossRefGoogle ScholarPubMed
Worster, M. G. 2000 Solidification of fluids. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffat, H. K. & Worster, M. G.), pp. 393446. Cambridge University Press.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar