Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-07T15:19:44.078Z Has data issue: false hasContentIssue false

The form drag of two-dimensional bluff-plates immersed in turbulent boundary layers

Published online by Cambridge University Press:  28 March 2006

M. C. Good
Affiliation:
Department of Mechanical Engineering, University of Melbourne
P. N. Joubert
Affiliation:
Department of Mechanical Engineering, University of Melbourne

Abstract

Measurements of the distributions of pressure on a bluff flat plate (fence) have been correlated with the characteristics of the smooth-wall boundary layer in which it is immersed. For zero pressure-gradient flows, correlations are obtained for the variation of form drag with plate height h which are analogous in form to the ‘law of the wall’ and the ‘velocity-defect law’ for the boundary-layer velocity profile. The data for adverse pressure-gradient flows is suggestive of a ‘law of the wake’ type correlation. Pressures on the upstream face of the bluff-plate are determined by a wall-similarity law, even for h/δ > 1, and are independent of the pressure-gradient history of the flow; the separation induced upstream is apparently of the Stratford-Townsend type. The effects of the history of the boundary layer are manifested only in the flow in the rear separation bubble, and then only for h/δ > ½. The base pressure is also sensitive to free-stream pressure gradients downstream of the bluff-plate. The relative extent of upstream influence of the bluff-plate on the boundary layer is found to increase rapidly as h/δ decreases. One set of measurements of the mean flow field is also presented.

Type
Research Article
Copyright
© 1968 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arie, M. & Rouse, H. 1956 J. Fluid Mech. 1, 129.
Bradbury, L. J. S. 1965 J. Fluid Mech. 23, 31.
Chapman, D. R., Kuehn, D. M. & Larson, H. K. 1957 NACA TN 3869.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
Clauser, F. H. 1956 Advances in Applied Mechanics 4, 16. New York: Academic Press.
Coles, D. 1956 J. Fluid Mech. 1, 191.
Goertler, H. 1942 Z. angew. Math. Mech. 22, 244.
Good, M. C. 1965 M.Eng.Sc. thesis, Univ. of Melbourne.
Head, M. R. & Rechenberg, I. 1962 J. Fluid Mech. 14, 1.
Hoerner, S. 1958 Fluid-Dynamic Drag. Published by the author.
Korst, H. H. 1956 J. Appl. Mech., Trans. ASME E, 23, 593.
Morris, H. M. 1954 Proc. ASCE 80, Separate no. 390.
Nash, J. F. & Bradshaw, P. 1967 J. Roy. Aero. Soc. 71, 44.
Newman, B. G. 1951 Aust. A.R.C.C. Rept. no. ACA-53.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Perry, A. E. & Joubert, P. N. 1963 J. Fluid Mech. 17, 193.
Plate, E. J. 1964 ASME Paper no. 64-FE-17.
Preston, J. H. 1954 J. Roy. Aero. Soc. 58, 109.
Roshko, A. & Lau, J. C. 1965 Proc. of the 1965 Heat Transfer and Fluid Mech. Inst., p. 157.
Rotta, J. C. 1962 Progr. Aero. Sci. 2, 5. Oxford: Pergamon Press.
Savage, S. B. 1960 Mech. Engng Res. Lab., Aero. Section, Rept. no. Ae 3. McGill Univ.
Sawyer, R. A. 1960 J. Fluid Mech. 9, 543.
Sawyer, R. A. 1963 J. Fluid Mech. 17, 481.
Schlichting, H. 1962 Boundary Layer Theory, 4th ed. New York: McGraw-Hill.
Schubauer, G. B. & Klebanoff, P. S. 1950 NACA TN 2133.
Smith, D. W. & Walker, J. H. 1958 NACA TN 4231.
Stratford, B. S. 1959 J. Fluid Mech. 5, 1.
Tani, I. 1958 Boundary Layer Research, ed. by H. Goertler, p. 377. Berlin: Springer-Verlag.
Townsend, A. A. 1960 J. Fluid Mech. 8, 143.
Townsend, A. A. 1962 J. Fluid Mech. 12, 536.
Townsend, A. A. 1965a J. Fluid Mech. 12, 799.
Wieghardt, K. 1953 Forschungshefte für Schiffstechnik 2, 65.