Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-03T10:23:42.449Z Has data issue: false hasContentIssue false

Front propagation in cellular flows: scale dependence versus scale invariance

Published online by Cambridge University Press:  08 August 2023

S. Bodea
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
E. Beauvier
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
A. Pocheau*
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 13384 Marseille, France
*
Email address for correspondence: alain.pocheau@univ-amu.fr

Abstract

We experimentally study front propagation in a vortex lattice providing closed steady cellular flows and no mean flow. To this end, we trigger an autocatalytic reaction in a solution stirred by magnetohydrodynamic flows in a Hele-Shaw cell. We evidence a scale-invariant regime below some flow magnitude and a scale-dependent regime above, the scales referring here to the vortex scale and the front thickness. The transition between these regimes corresponds to a unitary Damköhler number $Da$: $Da=1$. The enhancement of the mean front velocity with the flow magnitude nicely agrees with the literature on numerical simulations and theoretical analyses in the scale-invariant regime $Da>1$, but displays noticeable discrepancies in the scale-dependent one $Da<1$. This shows that the transition between regimes is qualitatively sharp but quantitatively smooth.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, M., Celani, A., Vergni, D. & Vulpiani, A. 2001 Front propagation in laminar flows. Phys. Rev. E 64, 046307.CrossRefGoogle ScholarPubMed
Abel, M., Cencini, M., Vergni, D. & Vulpiani, A. 2002 Front speed enhancement in cellular flows. Chaos 12 (2), 481488.CrossRefGoogle ScholarPubMed
Abraham, E.R. 1998 The generation of plankton patchiness by turbulent stirring. Nature 391, 577.CrossRefGoogle Scholar
Abraham, E.R., Law, C.S., Boyd, P.W., Lavender, S.J., Maldonado, M.T. & Bowie, A.R. 2000 Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727.CrossRefGoogle ScholarPubMed
Audoly, B., Berestycki, H. & Pomeau, Y. 2000 Réaction diffusion en écoulement stationnaire rapide. C. R. Acad. Sci. Ser. IIb: Mec. 328, 255262.Google Scholar
Beauvier, E., Bodea, S. & Pocheau, A. 2016 Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth. Soft Matt. 12 (43), 89358941.CrossRefGoogle Scholar
Beauvier, E., Bodea, S. & Pocheau, A. 2017 Front propagation in a vortex lattice: dependence on the vortex structure. Phys. Rev. E 96, 053109–20.CrossRefGoogle Scholar
Cencini, M., Torcini, A., Vergni, D. & Vulpiani, A. 2003 Thin front propagation in steady and unsteady cellular flows. Phys. Fluids 15, 679688.CrossRefGoogle Scholar
Citri, O. & Epstein, I.R. 1987 Dynamical behavior in the chlorite-iodide reaction: a simplified mechanism. J. Phys. Chem. 91, 60346040.CrossRefGoogle Scholar
De Wit, A. 2020 Chemo-hydrodynamic patterns and instabilities. Annu. Rev. Fluid Mech. 52 (1), 531555.CrossRefGoogle Scholar
Edouard, S., Legras, B., Lefèvre, F. & Eymard, R. 1996 The effect of small-scale inhomogeneities on ozone depletion in the Arctic. Nature 384, 444.CrossRefGoogle Scholar
Edwards, B.F. 2002 Poiseuille advection of chemical reaction fronts. Phys. Rev. Lett. 89, 104501104505.CrossRefGoogle ScholarPubMed
Ekman, V.W. 1905 On the influence of the earth's rotation on ocean currents. Arch. Math. Astron. Phys. 2, 152.Google Scholar
Epstein, I.R. & Kustin, K. 1985 A mechanism for dynamical behavior in the oscillatory chlorite-iodide reaction. J. Phys. Chem. 89, 22752282.CrossRefGoogle Scholar
Field, R.J. & Burger, M. 1985 Oscillations and Travelling Waves in Chemical System. John Wiley & Sons.Google Scholar
Fischer, R. 1937 The wave of advance of advantageous genes. Ann. Eugen. 7, 355369.CrossRefGoogle Scholar
Goriely, A. 1995 Simple solution to the nonlinear front problem. Phys. Rev. Lett. 75, 2047.CrossRefGoogle Scholar
Hanna, A., Saul, A. & Showalter, K. 1982 Detailed studies of propagating fronts in the iodate oxidation of arsenous acid. J. Am. Chem. Soc. 104, 38383844.CrossRefGoogle Scholar
Kelley, D.H. & Ouellette, N.T. 2011 Onset of three dimensionality in electromagnetically driven thin-layer flows. Phys. Fluids 23, 045103–10.CrossRefGoogle Scholar
de Kepper, P., Boissonade, J. & Epstein, I.R. 1990 Chlorite-iodide reaction: a versatile system for the study of nonlinear dynamical behavior. J. Phys. Chem. 94, 65256536.CrossRefGoogle Scholar
Kolmogorov, A.N., Petrovskii, I.G. & Piskunov, N.S. 1937 Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem. Moscow Univ. Bull. Math. 1, 1.Google Scholar
Leconte, M., Martin, J., Rakotomalala, N. & Salin, D. 2003 Pattern of reaction diffusion fronts in laminar flows. Phys. Rev. Lett. 90 (12), 128302.CrossRefGoogle ScholarPubMed
Mahoney, J.R., Bargteil, D., Kingsbury, M., Mitchell, K.A. & Solomon, T. 2012 Invariant barriers to reactive front propagation in fluid flows. Europhys. Lett. 98 (4), 44005.CrossRefGoogle Scholar
Mukherjee, S. & Paul, M.R. 2022 The fluid dynamics of propagating fronts with solutal and thermal coupling. J. Fluid Mech. 942, A36.CrossRefGoogle Scholar
Nevins, T.D. & Kelley, D.H. 2019 Vertical shear alters chemical front speed in thin-layer flows. J. Fluid Mech. 874, 235262.CrossRefGoogle Scholar
Ottino, J.M. 1994 Mixing and chemical reactions a tutorial. Chem. Engng Sci. 49 (24, Part A), 40054027.CrossRefGoogle Scholar
Paoletti, M.S. & Solomon, T.H. 2005 Front propagation and mode-locking in an advection-reaction-diffusion system. Phys. Rev. E 72, 046204046213.CrossRefGoogle Scholar
Pocheau, A. & Harambat, F. 2006 Effective front propagation in steady cellular flows: a least time criterion. Phys. Rev. E 73, 065304065306.CrossRefGoogle ScholarPubMed
Pocheau, A. & Harambat, F. 2008 Front propagation in a laminar cellular flow: shapes, velocities, and least time criterion. Phys. Rev. E 77, 036304036332.CrossRefGoogle Scholar
Russell, C.A., Smith, D.L., Waller, L.A., Childs, J.E. & Real, L.A. 2004 A priori prediction of disease invasion dynamics in a novel environment. Proc. R. Soc. Lond. B 271, 2125.CrossRefGoogle Scholar
van Saarloos, W. 2003 Front propagation into unstable states. Phys. Rep. 386, 29222.CrossRefGoogle Scholar
Saul, A. & Showalter, K. 1985 Propagating reaction-diffusion fronts. In Oscillations and Travelling Waves in Chemical System, (ed. R.J. Field & M. Burger), chap. 11, pp. 419–439. Wiley.Google Scholar
Scott, S.K. 1994 Oscillations, Waves and Chaos in Chemical Kinetics. Oxford University Press.Google Scholar
Tabeling, P., Burkhart, S., Cardoso, O. & Willaime, H. 1991 Experimental study of freely decaying two-dimensional turbulence. Phys. Rev. Lett. 67 (27), 37723775.CrossRefGoogle ScholarPubMed
Tzella, A. & Vanneste, J. 2014 Front propagation in cellular flows for fast reaction and small diffusivity. Phys. Rev. E 90, 011001–5.CrossRefGoogle ScholarPubMed
Tzella, A. & Vanneste, J. 2015 Fkpp fronts in cellular flows: the large-Péclet regime. SIAM J. Appl. Maths 75 (4), 17891816.CrossRefGoogle Scholar
Tzella, A. & Vanneste, J. 2019 Chemical front propagation in periodic flows: FKPP vs G. SIAM J. Appl. Maths 79 (1), 131152.CrossRefGoogle Scholar
Vladimirova, N., Constantin, P., Kiselev, A., Ruchayskiy, O. & Ryzhik, L. 2003 Flame enhancement and quenching in fluid flows. Combust. Theor. Model. 7, 487508.CrossRefGoogle Scholar
Williams, F.A. 1985 Combustion Theory. Benjamin-Cummings.Google Scholar

Bodea et al. Supplementary Movie 1

Front propagation at $U/V_0 =22.2$ in an array of vortices of size $L=5$mm involving $20$ vortices in their width. The movie is accelerated 12 times.

Download Bodea et al. Supplementary Movie 1(Video)
Video 3 MB

Bodea et al. Supplementary Movie 2

Front propagation at $U/V_0 = 50.8$ in an array of vortices of size $L=20$mm involving $5$ vortices in their width. The movie is accelerated 12 times.

Download Bodea et al. Supplementary Movie 2(Video)
Video 2.1 MB

Bodea et al. Supplementary Movie 3

Front propagation at $U/V_0 = 63.4$ in an array of vortices of size $L=40$mm involving $3$ vortices in their width. The movie is accelerated 12 times.

Download Bodea et al. Supplementary Movie 3(Video)
Video 2.4 MB